
Divide-and-conquer

Divide-and-Conquer (Input: Problem P)

To Solve P:

1. Divide P into smaller problems P1, P2, P3.....Pk.

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2, ...Pk into solution for P.

1 MergeSort

• Can we design better than n2 (quadratic) sorting algorithm?

• We will do so using one of the most powerful algorithm design techniques.

• Using divide-and-conquer, we can obtain a mergesort algorithm.

– Divide: Divide n elements into two subsequences of n/2 elements each.

– Conquer: Sort the two subsequences recursively.

– Combine: Merge the two sorted subsequences.

• Assume we have procedure Merge(A, p, q, r) which merges sorted A[p..q] with sorted A[q+1....r]

• We can sort A[p...r] as follows (initially p=1 and r=n):

Merge Sort(A,p,r)

If p < r then

q = b(p + r)/2c
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

• How does Merge(A, p, q, r) work?

– Imagine merging two sorted piles of cards. The basic idea is to choose the smallest of
the two top cards and put it into the output pile.

– Running time: (r − p)

1

– Implementation is a bit messier..

Mergesort Example:

125 4 6 3 2 6

1 2 2 3 4 5 6 6

2 4 5 6 1 2 3 6

2 5 4 6 1 3 2 6

125 4 6 3 2 6

4

5 4 6 1 3 2 62

1 25 3 62 6

5 2 4 6 1 3 2 6

1.1 Mergesort Correctness

• Prove that Merge() is correct (what is the invariant?)

• Assuming that Merge is correct, prove that Mergesort() is correct.

– Induction on n

1.2 Mergesort Analysis

• To simplify things, let us assume that n is a power of 2, i.e n = 2k for some k.

• Running time of a recursive algorithm can be analyzed using a recurrence equation/relation.
Each “divide” step yields two sub-problems of size n/2.

T (n) ≤ c1 + T (n/2) + T (n/2) + c2n

≤ 2T (n/2) + (c1 + c2n)

• Next class we will prove that T (n) ≤ cn log2 n. Intuitively, we can see why the recurrence has
solution n log2 n by looking at the recursion tree: the total number of levels in the recursion
tree is log2 n + 1 and each level costs linear time.

• Note: If n 6= 2k the recurrence gets more complicated, but the solution is the same. (We will
often assume n = 2k to avoid complicated cases).

2

2 Matrix Multiplication

• Let X and Y be n× n matrices

X =



x11 x12 · · · x1n

x21 x22 · · · x1n

x31 x32 · · · x1n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn


• We want to compute Z = X · Y

– zij =
∑n

k=1 Xik · Ykj

• Naive method uses ⇒ n2 · n = Θ(n3) operations

• Divide-and-conquer solution:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(A · E + B ·G) (A · F + B ·H)
(C · E + D ·G) (C · F + D ·H)

}

– The above naturally leads to divide-and-conquer solution:

∗ Divide X and Y into 8 sub-matrices A, B, C, and D.
∗ Do 8 matrix multiplications recursively.
∗ Compute Z by combining results (doing 4 matrix additions).

– Lets assume n = 2c for some constant c and let A, B, C and D be n/2× n/2 matrices

∗ Running time of algorithm is T (n) = 8T (n/2) + Θ(n2) ⇒ T (n) = Θ(n3)

– But we already discussed a (simpler/naive) O(n3) algorithm! Can we do better?

2.1 Strassen’s Algorithm

• Strassen observed the following:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(S1 + S2 − S4 + S6) (S4 + S5)

(S6 + S7) (S2 + S3 + S5 − S7)

}
where

S1 = (B −D) · (G + H)
S2 = (A + D) · (E + H)
S3 = (A− C) · (E + F)
S4 = (A + B) ·H
S5 = A · (F −H)
S6 = D · (G− E)
S7 = (C + D) · E

3

– Lets test that S6 + S7 is really C · E + D ·G

S6 + S7 = D · (G− E) + (C + D) · E
= DG−DE + CE + DE

= DG + CE

• This leads to a divide-and-conquer algorithm with running time T (n) = 7T (n/2) + Θ(n2)

– We only need to perform 7 multiplications recursively.
– Division/Combination can still be performed in Θ(n2) time.

• Lets solve the recurrence using the iteration method

T (n) = 7T (n/2) + n2

= n2 + 7(7T (
n

22
) + (

n

2
)2)

= n2 + (
7
22

)n2 + 72T (
n

22
)

= n2 + (
7
22

)n2 + 72(7T (
n

23
) + (

n

22
)2)

= n2 + (
7
22

)n2 + (
7
22

)2 · n2 + 73T (
n

23
)

= n2 + (
7
22

)n2 + (
7
22

)2n2 + (
7
22

)3n2.... + (
7
22

)log n−1n2 + 7log n

=
log n−1∑

i=0

(
7
22

)in2 + 7log n

= n2 ·Θ((
7
22

)log n−1) + 7log n

= n2 ·Θ(
7log n

(22)log n
) + 7log n

= n2 ·Θ(
7log n

n2
) + 7log n

= Θ(7log n)

– Now we have the following:

7log n = 7
log7 n

log7 2

= (7log7 n)(1/ log7 2)

= n(1/ log7 2)

= n
log2 7

log2 2

= nlog 7

– Or in general: alogk n = nlogk a

4

So the solution is T (n) = Θ(nlog 7) = Θ(n2.81...)

• Note:

– We are ’hiding’ a much bigger constant in Θ() than before.

– Currently best known bound is O(n2.376..) (another method).

– Lower bound is (trivially) Ω(n2).

5

