Divide-and-conquer

Divide-and-Conquer (Input: Problem P)

To Solve P:
1. Divide P into smaller problems Py, P», Ps.....Py.
2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P, ...P. into solution for P.

1 MergeSort

e Can we design better than n? (quadratic) sorting algorithm?

e We will do so using one of the most powerful algorithm design techniques.

e Using divide-and-conquer, we can obtain a mergesort algorithm.

— Divide: Divide n elements into two subsequences of n/2 elements each.
— Congquer: Sort the two subsequences recursively.

— Combine: Merge the two sorted subsequences.
e Assume we have procedure Merge(A, p, ¢, 7) which merges sorted A[p..q] with sorted A[q+1....r]

e We can sort Alp...r] as follows (initially p=1 and r=n):

Merge Sort(A,p,r)

If p < r then
q=|p+r)/2]
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

e How does Merge(A, p, q,r) work?

— Imagine merging two sorted piles of cards. The basic idea is to choose the smallest of
the two top cards and put it into the output pile.

— Running time: (r — p)

— Implementation is a bit messier..

Mergesort Example:

5 2 46 1 3 2 6

52 46 13 26

5 2 4 6 13 2 6
5 2 4 6 1 3 2 6

1 2 2 3 456 6

T

2 45 6 12 3 6

2 5/\\\4 6 1 3/\\\2 6
AR A
1.1 Mergesort Correctness
e Prove that Merge() is correct (what is the invariant?)

e Assuming that Merge is correct, prove that Mergesort() is correct.

— Induction on n

1.2 Mergesort Analysis

e To simplify things, let us assume that n is a power of 2, i.e n = 2* for some k.

e Running time of a recursive algorithm can be analyzed using a recurrence equation/relation.
Each “divide” step yields two sub-problems of size n/2.

Tn) < c1+T(n/2)+T(n/2)+ can
< 2T (n/2) + (c1 + c2n)

e Next class we will prove that T'(n) < enlog, n. Intuitively, we can see why the recurrence has
solution n logs n by looking at the recursion tree: the total number of levels in the recursion
tree is logy, m + 1 and each level costs linear time.

e Note: If n # 2F the recurrence gets more complicated, but the solution is the same. (We will
often assume n = 2¥ to avoid complicated cases).

2 Matrix Multiplication

e Let X and Y be n x n matrices

11 12 o Tin
T21 22 o0 Tin
X=4q 731 T32 - T
Tnl Tn2 ' Tnn

e We want to compute Z = X - Y
— 2ij = D _p=1 Xik * Yij
e Naive method uses = n? - n = O(n?) operations

e Divide-and-conquer solution:
P A B\ JE F | _ (A-E+B-G) (A-F+B-H)
1 C D G H| | (C-E+D-G) (C-F+D-H)
— The above naturally leads to divide-and-conquer solution:
x Divide X and Y into 8 sub-matrices A, B, C, and D.

* Do 8 matrix multiplications recursively.

« Compute Z by combining results (doing 4 matrix additions).
— Lets assume n = 2¢ for some constant ¢ and let A, B, C and D be n/2 x n/2 matrices
* Running time of algorithm is T'(n) = 8T'(n/2) + O(n?) = T'(n) = O(n?)

— But we already discussed a (simpler/naive) O(n?) algorithm! Can we do better?

2.1 Strassen’s Algorithm

e Strassen observed the following:

Z_{A B}{E F}_{@+&—&+&) (S4+ Ss5) }
- C D G H - (SG+S7) (52+53+S5—S7)

where

S, = (B=D)-(G+H)
Sy = (A+D) (E+H)
S = (A-C)-(E+F)
Sy = (A+B)-H
S5 = A-(F—H)
S = D-(G-E)

S; = (C+D)-E

— Lets test that S¢ + S7isreally C-E+ D -G

Ss+Sr = D-(G—E)+(C+D)-E
— DG - DE+CE+ DE
— DG+CE

e This leads to a divide-and-conquer algorithm with running time 7'(n) = 77(n/2) + ©(n?)

— We only need to perform 7 multiplications recursively.

— Division/Combination can still be performed in ©(n?) time.

e Lets solve the recurrence using the iteration method

T(n) = 7T(n/2)+n?

.) n n. 9
= W+ TTT(5) + (5)?)
7 n
= ”2+(?)”2+72T(2*2)
7 n n
= w2 () + T (g) + (55)?)
7 7 n
= 0t (i + ()" n® + TT ()
7 7 7 7
2 2 2.2 3,,2 logn—1, 2 logn
logn—1 7
— Z (272)1,”2_{_710gn
=0
7 ogn— ogn
= O((g)) + T8
7logn
_ 2 logn
= n -@(7(22)1%”)4-7 s
7logn
_ 2 logn
— @(7logn)
— Now we have the following:
logz n
710gn — 7log72
= (710g7 ’I’L)(l/ 10g7 2)
_ (1/1ogr2)
logo 7
= nlog22
— nlog?
log;. n log;. a

— Or in general: a =n

So the solution is T'(n) = O(n'%87) = O(n28!)
e Note:

— We are ’hiding’ a much bigger constant in O() than before.

— Currently best known bound is O(n?37) (

— Lower bound is (trivially) Q(n?).

another method).

