1. (CLRS 6.1-1) What are the minimum and maximum number of elements in a heap of height h?

Solution: The minimum number of elements is 2^h and the maximum number of elements is $2^{h+1} - 1$.

2. (CLRS 6.1-4) Where in a min-heap might the largest element reside, assuming that all elements are distinct?

Solution: Since the parent is greater or equal to its children, the smallest element must be a leaf node.

3. (CLRS 6.1-5) Is an array that is in sorted order a min-heap?

Yes.

4. (CLRS 6.2-4) What is the effect of calling MIN-HEAPIFY(A, i) for $i > size[A]/2$?

Solution: No effect. All nodes at index $i > size[A]/2$ are leaves.

5. (CLRS 6.5-3) Write pseudocode for the procedures HEAP-EXTRACT-MIN, HEAP-DECREASE-KEY and HEAP-INSERT that implement a min-priority queue with a min-heap.

Solution:

```plaintext
HEAP-MINIMUM(A)
   return A[1]

HEAP-EXTRACT-MIN(A)
   if heap-size[A] < 1
      then error ‘‘heap underflow’’
   min <- A[1]
   MIN-HEAPIFY(A,1)
   return min
```
HEAP-DECREASE-KEY(A,i,key)
 if key > A[i]
 then error ‘‘new key is larger than current key’’
 A[i] <- key
 while i > 1 and A[parent(i)] > A[i]
 do exchange A[i] <-> A[parent(i)]
 i <- parent(i)

MIN-HEAP-INSERT(A,key)
 heap-size[A] <- heap-size[A] + 1
 A[heap-size[A]] <- +inf
 HEAP-DECREASE-KEY(A,heap-size[A],key)

6. (CLRS 6.5-8) Give an \(O(n \lg k) \)-time algorithm to merge \(k \) sorted lists into one sorted list, where \(n \) is the total number of elements in all the input lists. (Hint: use a min-heap for \(k \)-way merging.)

Solution: The straightforward solution is to pick the smallest of the top elements in each list, repeatedly. This takes \(k - 1 \) comparisons per element, in total \(O(k \cdot n) \).

As the hint suggests, the idea for the “improved” solution is to keep the smallest element from each list in a heap; each element is augmented with the index of the lists where it comes from. We can perform a DeleteMin on the heap to find and delete the smallest element and insert the next element from the corresponding list.

Analysis: It takes \(O(k) \) to build the heap; for every element, it takes \(O(lg k) \) to DeleteMin and \(O(lg k) \) to insert the next one from the same list. In total it takes \(O(k + n \lg k) = O(n \lg k) \).

7. (CLRS 9.3-6) Give an \(O(n \lg k) \) algorithm to find the \(k - 1 \) elements in a set that partition the set into (approx.) \(k \) equal-sized sets \(A_1, A_2, \ldots A_k \) such that all elements in \(A_i \) are smaller than all elements in \(A_{i+1} \).

Solution: For simplicity, assume that \(k \) is a power of 2.

\[
k\text{-PARTITION}(A, p, r, k)\]
if \(k > 1 \) then
 q = SELECT(A, (p+r)/2)
 output q
 k\text{-PARTITION}(A, p, (p+r)/2, k/2)
 k\text{-PARTITION}(A, (p+r)/2+1, r, k/2)
End.

Analysis: \(T(n, k) = 2T(n/2, k/2) + \Theta(n) \), and \(T(n/k, 1) = 1 \) has solution \(T(n) = \Theta(n \lg k) \).
8. (CLRS 9-1) Given a set of \(n \) numbers, we wish to find the \(i \) largest in sorted order using a comparison-based algorithm. Find the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms on terms of \(n \) and \(i \).

(a) Sort the numbers, and list the \(i \) largest.

Solution: Use Mergesort, or Quicksort with median as pivot. It takes \(O(n \lg n) \) to sort and \(O(i) \) to list, in total \(O(n \lg n) \).

(b) Build a max-priority queue from the numbers, and call EXTRACT-MAX \(i \) times.

Solution: Building a heap takes \(O(n) \), and EXTRACT-MAX costs \(O(\lg n) \). In total this algorithm takes \(O(n + i \lg n) \).

(c) Use a SELECT algorithm to find the \(i \)th largest number, partition around that number, and sort the \(i \) largest numbers.

Solution: This takes \(O(n) \) to select the \(i \)th largest and partition around it, and \(O(i \lg i) \) to sort, in total \(O(n + i \lg i) \).