1 Introduction

- We have discussed several fundamental algorithms (sorting, selection, etc)
- We will now turn to data structures; They play an important role in algorithms design.
 - Today we discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
 - INSERT: Insert a new element e in S
 - FINDMIN: Return the minimal element in S
 - DELETEMIN: Delete the minimal element in S
- Sometimes we are also interested in supporting the following operations:
 - CHANGE: Change the key (priority) of an element in S
 - DELETE: Delete an element from S
- Priority queues have many applications, e.g., in discrete event simulation, graph algorithms
- We can obviously sort using a priority queue:
 - Insert all elements using INSERT
 - Delete all elements in order using FINDMIN and DELETEMIN

3 Priority Queue implementations

3.1 A Priority Queue with an Array or List

- The first implementation that comes to mind is ordered array:

 $\begin{array}{ccccccccc}
 1 & 3 & 5 & 6 & 7 & 9 & 11 & 12 & 15 & 17 \\
 \end{array}$

 - FINDMIN can be performed in $O(1)$ time
– **DELETEMIN** and **INSERT** takes $O(n)$ time since we need to expand/compress the array after inserting or deleting element.

- If the array is unordered all operations take $O(n)$ time.
- We could use double linked sorted list instead of array to avoid the $O(n)$ expansion/compression cost
 – but **INSERT** can still take $O(n)$ time.

3.2 A Priority Queue with a Heap

- The common way of implementing a priority queue is using a heap

- **Heap definition:**

 - Perfectly balanced binary tree
 - * lowest level can be incomplete (but filled from left-to-right)
 - For all nodes v we have $\text{key}(v) \geq \text{key}(\text{parent}(v))$

- **Example:**

 ![Heap Example](image)

 - Heap can be implemented (stored) in two ways (at least)
 - Using pointers
 - In an array level-by-level, left-to-right

 Example:

 ![Array Representation](image)

 * the left and right children of node in entry i are in entry $2i$ and $2i + 1$, respectively
 * the parent of node in entry i is in entry $\left\lfloor \frac{i}{2} \right\rfloor$

- **Properties of heap:**
 - Height $\Theta(\log n)$
Minimum of S is stored in root

• Operations:

 • **INSERT**
 * Insert element in new leaf in leftmost possible position on lowest level
 * Repeatedly swap element with element in parent node until heap order is reestablished (**UP-HEAPIFY**)

 Example: Insertion of 4

 ![Insertion Example](image)

 • **FINDMIN**
 * Return root element

 • **DELETEMIN**
 * Delete element in root
 * Move element from rightmost leaf on lowest level to the root (and delete leaf)
 * Repeatedly swap element with the smaller of the children elements until heap order is reestablished (**DOWN-HEAPIFY**)

 Example:

 ![Deletion Example](image)

 • **CHANGE** and **DELETE** can be handled similarly in $O(\log n)$ time
 * Note: Assuming that we know the element to be changed/deleted (we cannot search in a heap!!)

• **Correctness**: Exercise.

• **Running time**: All operations traverse at most one root-leaf path $\Rightarrow O(\log n)$ time.

 • Sorting using heap (**HeapSort**) takes $\Theta(n \log n)$ time.

 $\Rightarrow n \cdot O(\log n)$ time to insert all elements (build the heap)
 $\Rightarrow n \cdot O(\log n)$ time to output sorted elements

 • Sometimes we would like to build a heap faster than $O(n \log n)$
– BUILDHEAP
 * Insert elements in any order in perfectly balanced tree
 * DOWN-HEAPIFY all nodes level-by-level, bottom-up
– Correctness:
 * Induction on height of tree: When doing level \(i \), all trees rooted at level \(i - 1 \) are heaps.
– Analysis:
 * The leaves are at height 0, the root is at height \(\log n \)
 * \(n \) elements \(\Rightarrow \leq \left\lfloor \frac{n}{2} \right\rfloor \) leaves \(\Rightarrow \left\lceil \frac{n}{2^h} \right\rceil \) elements at height \(h \)
 * Cost of DOWN-HEAPIFY on a node at height \(h \) is \(h \)
 * Total cost: \(\sum_{i=1}^{\log n} h \cdot \left\lceil \frac{n}{2^h} \right\rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^h} \)
 * It can be shown that \(\sum_{i=1}^{\log n} \frac{h}{2^h} = O(1) \) \(\Rightarrow \) the total buildheap cost is \(\Theta(n) \)

* Computing \(\sum_{i=1}^{n} \frac{h}{2^h} \) and \(\sum_{i=1}^{\infty} \frac{h}{2^h} \)
 . Differentiate \(\sum_{h=0}^{n} x^h = \frac{1-x^{n+1}}{1-x} \), respectively \(\sum_{h=0}^{\infty} x^h = \frac{1}{1-x} \) (assuming \(|x| < 1 \))
 . \(\sum_{h=0}^{\infty} hx^{h-1} = \frac{1}{(x-1)^2} \Rightarrow \sum_{h=0}^{n} hx^h = \frac{x}{(x-1)^2} \Rightarrow \sum_{h=0}^{n} \frac{h}{2^h} = \frac{1/2}{(1/2-1)^2} = O(1) \)