Linear Time Selection
(CLRS 9)

1 Quick-Sort Review

• The last two lectures we have considered Quick-Sort:
 – Divide $A[1...n]$ (using PARTITION) into subarrays $A' = A[1...q-1]$ and $A'' = A[q+1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 – Recursively sort A' and A''.

• We discussed how split point q produced by PARTITION only depends on last element in A

• We discussed how randomization can be used to get good expected partition point.

• Analysis:
 – Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 – Worst case ($q = 1$): $T(n) = T(1) + T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 – Expected case for randomized algorithm: $\Theta(n \log n)$

2 Selection

• If we could find element e such that $\text{rank}(e) = n/2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 – We could just exchange e with last element in A in beginning of PARTITION and thus make sure that A is always partition in the middle

• We will consider a more general problem than finding the i’th element:

 – Selection problem

 \textbf{SELECT}(i) is the i’th element in the sorted order of elements

 – Note: We do not require that we sort to find $\text{SELECT}(i)$
 – Note: $\text{SELECT}(1)=$minimum, $\text{SELECT}(n)=$maximum, $\text{SELECT}(n/2)=$median
• Special cases of Select*(i)
 – Minimum or maximum can easily be found in \(n - 1 \) comparisons
 * Scan through elements maintaining minimum/maximum
 – Second largest/smallest element can be found in \((n - 1) + (n - 2) = 2n - 3 \) comparisons
 * Find and remove minimum/maximum
 * Find minimum/maximum
 – Median:
 * Using the above idea repeatedly we can find the median in time \(\sum_{i=1}^{n/2}(n-i) = n^2/2 - \sum_{i=1}^{n/2}i = n^2/2 - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2) \)
 * We can easily design \(\Theta(n \log n) \) algorithm using sorting

• Can we design \(O(n) \) time algorithm for general \(i \)?
• If we could partition nicely (which is what we are really trying to do) we could solve the problem
 – by partitioning and then recursively looking for the element in one of the partitions:

\[
\begin{align*}
\text{Select}(A, p, r, i) &= \text{IF } p = r \text{ THEN RETURN } A[p] \\
&\quad q=\text{PARTITION}(A, p, r) \\
&\quad k = q - p + 1 \\
&\quad \text{IF } i \leq k \text{ THEN} \\
&\quad \quad \text{RETURN Select}(A, p, q, i) \\
&\quad \quad \text{ELSE} \\
&\quad \quad \quad \text{RETURN Select}(A, q + 1, r, i - k) \\
&\quad \text{FI}
\end{align*}
\]

Select \(i \)'th elements using Select*(A, 1, n, i)
 – If the partition was perfect \((q = n/2) \) we have

\[
T(n) = T(n/2) + n \\
= n + n/2 + n/4 + n/8 + \cdots + 1 \\
= \sum_{i=0}^{\log n} \frac{n}{2^i} \\
= n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i \\
= \Theta(n)
\]
Note:

* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in $T(n) = T(n-1) + n = \Theta(n^2)$ time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction ($\alpha < 1$) of the elements are eliminated we get running time $T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n)$.

- It turns out that we can modify the algorithm and get $T(n) = \Theta(n)$ in the worst case
 - The idea is to find a split element q such that we always eliminate a fraction of the elements:

 \begin{itemize}
 \item Select i
 \item Divide n elements into groups of 5
 \item Select median of each group (⇒ $\lceil \frac{n}{5} \rceil$ selected elements)
 \item Use SELECT recursively to find median q of selected elements
 \item Partition all elements based on q
 \end{itemize}

 \begin{itemize}
 \item Use SELECT recursively to find i'th element
 \begin{itemize}
 \item If $i \leq k$ then use SELECT(i) on k elements
 \item If $i > k$ then use SELECT$(i - k)$ on $n - k$ elements
 \end{itemize}
 \end{itemize}

 - If n' is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n')$

- Estimation of n':
 - Consider the following figure of the groups of 5 elements
 \begin{itemize}
 \item An arrow between element e_1 and e_2 indicates that $e_1 > e_2$
 \item The $\lceil \frac{n}{5} \rceil$ selected elements are drawn solid (q is median of these)
 \item Elements $> q$ are indicated with box
 \end{itemize}
– Number of elements > q is larger than \(3\left(\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil - 2\right) \geq \frac{3n}{10} - 6\)
 * We get 3 elements from each of \(\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil\) columns except possibly the one containing q and the last one.
– Similarly the number of elements < q is larger than \(\frac{3n}{10} - 6\)
 \[\downarrow\]
 We recurse on at most \(n' = n - (\frac{3n}{10} - 6) = \frac{7}{10}n + 6\) elements

• So \textsc{Selection}(i) runs in time \(T(n) = \Theta(n) + T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7}{10}n + 6\right)\)

• Solution to \(T(n) = n + T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7}{10}n + 6\right):\)
 – Guess \(T(n) \leq cn\)
 – Induction:
 \[
 T(n) = n + T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7}{10}n + 6\right)
 \leq n + c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot \left(\frac{7}{10}n + 6\right)
 \leq n + c \cdot \frac{n}{5} + c + \frac{7}{10}cn + 6c
 = \frac{9}{10}cn + n + 7c
 \leq cn
 \]

If \(7c + n \leq \frac{1}{10}cn\) which can be satisfied (e.g. true for \(c = 20\) if \(n > 140\))
– Note: It is important that we chose every 5’th element, not all other choices will work (homework)
 (Note: This algorithm gives \(~16n\) comparisons. Best know \(~2.95n\). Best lower bound > \(2n\)).