Minimum Spanning Trees
(CLRS 23)

• Problem: Given connected, undirected graph \(G = (V,E) \) where each edge \((u,v)\) has weight \(w(u,v) \). Find acyclic set \(T \subseteq E \) connecting all vertices in \(V \) with minimal weight
 \[w(T) = \sum_{(u,v) \in T} w(u,v). \]

• An acyclic set connecting all vertices is called a spanning tree. We want to find a spanning tree of minimal weight. We use minimum spanning tree as short for minimum weight spanning tree.

• MST problem has many applications
 – For example, think about connecting cities with minimal amount of wire or roads (cities are vertices, weight of edges are distances between city pairs).

• Example:

1 PRIM’s algorithm

 – Greedy algorithm for computing MST:
 * Start with spanning tree containing arbitrary vertex \(r \) and no edges
 * Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree
 – Implementation:
 * To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of \(v \) to \(v \) in the priority queue).
 * For each node \(u \) maintain \(visit(u) \) (\((u, visit(u))\) is the currently best edge connecting it to the tree.)
PRIM(r)

For each $v \in V$ DO

 INSERT(PQ, v, ∞)

DECREASE-KEY($PQ, r, 0$)

WHILE PQ not empty DO

 $u = \text{DELETEMIN}(PQ)$

 (output edge $(u, \text{visit}(u))$ as part of MST)

 For each $(u, v) \in E$ DO

 IF $v \in PQ$ and $w(u, v) < \text{key}(v)$ THEN

 visit[v] = u

 DECREASE-KEY($PQ, v, w(u, v)$)

On the example graph, the greedy algorithm would work as follows (starting at vertex a):

a) b) c) d) e) f) g) h)
Analysis:
* While loop runs $|V|$ times ⇒ we perform $|V|$ DELETEMIN’s
 ↓
 $O((|V| + |E|)\log|V|) = O(|E|\log|V|)$ running time.

Correctness:
* When designing a greedy algorithm the hard part is to prove that it works correctly.
 * We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms:
 Some definitions
 - A cut $(S, V \setminus S)$ is a partition of V into sets S and $V \setminus S$
 - A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \setminus S$ or $v \in S$ and $u \in V \setminus S$
 - A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut
 Example: Cut S respects T

 \[\text{"cut"} \]
 \[S \rightarrow \bullet \]
 \[\forall \land = T \]
 \[V \setminus S \]

Theorem: If $G = (V, E)$ is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge $e = (u, v)$ crossing S.

Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut consist of current spanning tree.

Proof:
* Let T^* be MST containing T
 * If $e \in T^*$ we are done
 * If $e \notin T^*$:
 - There must be (at least) one other edge $(x, y) \in T^*$ crossing the cut S such that there is a unique path from u to v in T^* (T^* is spanning tree)
· This path together with e forms a cycle
· If we remove edge (x, y) from T^* and add e instead, we still have spanning tree
· New spanning tree must have same weight as T^* since $w(u, v) \leq w(x, y)$

\[\Downarrow \]

There is a MST containing T and e.

Theorem allows us to describe a very abstract greedy algorithm for MST:

\[
\begin{align*}
T &= \emptyset \\
\text{While } |T| &\leq |V| - 1 \text{ DO} \\
&\quad \text{Find cut } S \text{ respecting } T \\
&\quad \text{Find minimal edge } e \text{ crossing } S \\
&\quad T = T \cup \{e\}
\end{align*}
\]

* Prim’s algorithm follows this abstract algorithm.
* Kruskal’s algorithm is another implementation of the abstract algorithm.

2 Kruskal’s Algorithm

- Kruskal’s algorithm is another implementation of the abstract algorithm.
- Idea in Kruskal’s algorithm:
 * Start with $|V|$ trees (one for each vertex)
 * Consider edges E in increasing order; add edge if it connects two trees
- Example:
We need (Union-Find) data structure that supports:

* **MAKE-SET(v)**: Create set consisting of \(v \)
* **UNION-SET(u,v)**: Unite set containing \(u \) and set containing \(v \)
* **FIND-SET(u)**: Return unique representative for set containing \(u \)
KRUSKAL

\[T = \emptyset \]

FOR each vertex \(v \in V \) MAKE-SET(\(v \))

Sort edges of \(E \) in increasing order by weight

FOR each edge \(e = (u, v) \in E \) in order DO

\[\text{IF } \text{FIND-SET}(u) \neq \text{FIND-SET}(v) \text{ THEN} \]

\[T = T \cup \{e\} \]

\[\text{UNION-SET}(u, v) \]

– Analysis:

* We use \(O(|E| \log |E|) \) time to sort edges and we perform \(|V| \) MAKE-SET, \(|V| - 1 \) UNION-set, and \(2|E| \) FIND-Set operations.

* We will discuss a simple solution to the Union-Find problem such that MAKE-SET and FIND-SET take \(O(1) \) time and UNION-SET takes \(O(\log V) \) time amortized.

Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|) \) like Prim’s algorithm.

– Correctness

* follows from Theorem above: If minimal edge connects two trees then there exists a cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

– The Union-Find problem: Maintain a set system under:

* MAKE-SET(\(v \)): Create set consisting of \(v \)

* UNION-SET(\(u, v \)): Unite set containing \(u \) and set containing \(v \)

* FIND-SET(\(u \)): Return unique representative for set containing \(u \)

– Simple solution:

* Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:
Sets

```
1 2
10 3
6

5 4
12 8

9 11
7
```

Representation

```
3 2 1 10 6
8 5 4 12
11 9 7
```

* Make-Set\((v) \): Make a list with one element ⇒ \(O(1) \) time
* Find-Set\((u) \): Follow pointer and return unique representative ⇒ \(O(1) \) time
* Union-Set\((u, v) \): Link first element in list with unique representative Find-Set\((u) \) after last element in list with unique representative Find-Set\((v) \) ⇒ \(O(|V|) \) time (as we have to update all unique representative pointers in list containing \(u \))

- With this simple solution the \(|V| - 1 \) Union-Set operations in Kruskal’s algorithm may take \(O(|V|^2) \) time.
- We can improve the performance of Union-Set with a very simple modification: Always link the smaller list after the longer list (⇒ update the pointers of the smaller list)
 * One Union-Set operation can still take \(O(|V|) \) time, but the \(|V| - 1 \) Union-Set operations takes \(O(|V| \log |V|) \) time altogether (one Union-Set takes \(O(\log |V|) \) time amortized):
 - Total time is proportional to number of unique representative pointer changes
 - Consider element \(u \):
 After pointer for \(u \) is updated, \(u \) belongs to a list of size at least double the size of the list it was in before
 \(\downarrow \)
 After \(k \) pointer changes, \(u \) is in list of size at least \(2^k \)
 \(\downarrow \)
 Pointer can be changed at most \(\log |V| \) times.
- With improvement, Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|) \) like Prim’s algorithm.