1 Basic Graph Definitions

- A graph \(G = (V, E) \) consists of a finite set of vertices \(V \) and a finite set of edges \(E \).
 - Directed graphs: \(E \) is a set of ordered pairs of vertices \((u, v)\) where \(u, v \in V \)
 \[
 \begin{align*}
 V &= \{1, 2, 3, 4, 5, 6\} \\
 E &= \{(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)\}
 \end{align*}
 \]
 - Undirected graph: \(E \) is a set of unordered pairs of vertices \(\{u, v\} \) where \(u, v \in V \)
 \[
 \begin{align*}
 V &= \{1, 2, 3, 4, 5, 6\} \\
 E &= \{\{1,2\}, \{1,5\}, \{2,5\}, \{3,6\}\}
 \end{align*}
 \]

- Edge \((u, v)\) is incident to \(u \) and \(v \)

- Degree of vertex in undirected graph is the number of edges incident to it.

- In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.

- A path from \(u_1 \) to \(u_2 \) is a sequence of vertices \(< u_1=v_0, v_1, v_2, \ldots, v_k=u_2 >\) such that \((v_i, v_{i+1}) \in E\) (or \(\{v_i, v_{i+1}\} \in E\))
 - We say that \(u_2 \) is reachable from \(u_1 \)
 - The length of the path is \(k \)
 - It is a cycle if \(v_0 = v_k \)

- An undirected graph is connected if every pair of vertices are connected by a path

 - The connected components are the equivalence classes of the vertices under the “reachability” relation. (All connected pair of vertices are in the same connected component).
• A directed graph is *strongly connected* if every pair of vertices are reachable from each other
 - The *strongly connected components* are the equivalence classes of the vertices under the “mutual reachability” relation.

• Graphs appear all over the place in all kinds of applications, e.g:
 - Trees ($|E| = |V| - 1$)
 - Connectivity/dependencies (house building plans, WWW-page connections = internet graph)

• Often the edges (u, v) in a graph have weights $w(u, v)$, e.g.
 - Road networks (distances)
 - Cable networks (capacity)

1.1 **Representation**

• *Adjacency-list* representation:
 - Array of $|V|$ list of edges incident to each vertex.

 Examples:

 ![Adjacency-list example](image)

 - Note: For undirected graphs, every edge is stored twice.
 - If graph is weighted, a weight is stored with each edge.

• *Adjacency-matrix* representation:
- $|V| \times |V|$ matrix A where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Examples:

Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal ($A^T = A$).

- If graph is weighted, weights are stored instead of one's.

• Comparison of matrix and list representation:

<table>
<thead>
<tr>
<th>Adjacency list</th>
<th>Adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Good if graph sparse ($</td>
<td>E</td>
</tr>
<tr>
<td>No quick access to (u, v)</td>
<td>$O(1)$ access to (u, v)</td>
</tr>
</tbody>
</table>

• We will use adjacency list representation unless stated otherwise ($O(|V| + |E|)$ space).

2 Graph traversal

• There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way
 - Breadth-first
 - Depth-first

• We can use them in many fundamental algorithms, e.g finding cycles, connected components,
2.1 Breadth-first search (BFS)

- Main idea:
 - Start at some source vertex \(s \) and visit,
 - All vertices at distance 1,
 - Followed by all vertices at distance 2,
 - Followed by all vertices at distance 3,

 - BFS corresponds to computing \textit{shortest path} distance (number of edges) from \(s \) to all other vertices.

- To control progress of our BFS algorithm, we think about \textit{coloring} each vertex
 - \textit{White} before we start,
 - \textit{Gray} after we visit the vertex but before we have visited all its adjacent vertices,
 - \textit{Black} after we have visited the vertex and all its adjacent vertices (all adjacent vertices are gray).

- We use a queue \(Q \) to hold all gray vertices—vertices we have seen but are still not done with.

- We remember from which vertex a given vertex \(v \) is colored gray—i.e. the node that discovered \(v \) first; this is called parent\([v] \).

- Algorithm:

```plaintext
BFS(s)

\[
\begin{align*}
\text{color}[s] &= \text{gray} \\
\text{d}[s] &= 0 \\
\text{ENQUEUE}(Q, s) \\
\text{WHILE } Q \text{ not empty DO} \\
\quad \text{DEQUEUE}(Q, u) \\
\quad \text{FOR } (u, v) \in E \text{ DO} \\
\quad \quad \text{IF color}[v] = \text{white THEN} \\
\quad \quad \quad \text{color}[v] &= \text{gray} \\
\quad \quad \quad \text{d}[v] &= \text{d}[u] + 1 \\
\quad \quad \quad \text{parent}[v] &= u \\
\quad \quad \quad \text{ENQUEUE}(Q, v) \\
\quad \quad \text{FI} \\
\quad \text{color}[u] &= \text{black} \\
\text{OD}
\end{align*}
\]
```
• Algorithm runs in $O(|V| + |E|)$ time

• Example (for directed graph):

a) ![Graph](image1)
b) ![Graph](image2)

• Note:
 - parent[v] forms a tree; BFS-tree.
 - $d[v]$ contains length of shortest path from s to v. (Prove by induction)
 - We can use parent[v] to find the shortest path from s to a given vertex.

• If graph is not connected we have to try to start the traversal at all nodes.

```
FOR each vertex $u \in V$ DO
  IF color[$u$] = white THEN BFS[$u$]
OD
```
Note: We can use algorithm to compute connected components in $O(|V| + |E|)$ time.

2.2 Depth-first search (DFS)

- If we use stack instead of queue Q we get another traversal order; depth-first
 - We go “as deep as possible”,
 - Go back until we find unexplored adjacent vertex,
 - Go as deep as possible,

- Often we are interested in “start time” and “finish time” of vertex u
 - $Start \ time \ (d[u])$: indicates at what “time” vertex is first visited.
 - $Finish \ time \ (f[u])$: indicates at what “time” all adjacent vertices have been visited.

- We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE, or, we can write a recursive DFS procedure
 - We will color a vertex gray when we first meet it and black when we finish processing all adjacent vertices.

- Algorithm:

```
DFS(u)
    color[u] = gray
    d[u] = time
    time = time + 1
    FOR (u, v) ∈ E DO
        IF color[v] = white THEN
            parent[v] = u
            DFS(v)
        FI
    OD
    color[u] = black
    f[u] = time
    time = time + 1
```

- Algorithm runs in $O(|V| + |E|)$ time
 - As before we can extend algorithm to unconnected graphs and we can use it to detect cycles in $O(|V| + |E|)$ time.
• Example:

- As previously parent[v] forms a tree; DFS-tree
 - Note: If u is descendent of v in DFS-tree then \(d[v] < d[u] < f[u] < f[v]\)

3 Topological sorting

- Definition: Topological sorting of directed acyclic graph \(G = (V, E)\) is a linear ordering of vertices \(V\) such that \((u, v) \in E \implies u\) appear before \(v\) in ordering.
Topological ordering can be used in scheduling:

- Example: Dressing (arrow implies “must come before”)

We want to compute order in which to get dressed. One possibility:

The given order is one possible topological order.

- Algorithm: Topological order just reverse DFS finish time (\(\Rightarrow O(|V| + |E|)\) running time).
- Correctness: \((u, v) \in E \iff f(v) < f(u)\)
 - Proof: When \((u, v)\) is explored by DFS algorithm, \(v\) must be white or black (gray \(\Rightarrow\) cycle).
 * \(v\) white: \(v\) visited and finished before \(u\) is finished \(\Rightarrow f(v) < f(u)\)
 * \(v\) black: \(v\) already finished \(\Rightarrow f(v) < f(u)\)
- Alternative algorithm: Count in-degree of each vertex and repeatedly number and remove in-degree 0 vertex and its outgoing edges: Homework.