1 Amortized Analysis

- Last time we discussed amortized analysis of data structures
 - A way of expressing that even though the worst-case performance of an operation can be bad, the total performance of a sequence of operations cannot be too bad.

- One way of thinking of amortized time is as being an “average”: If any sequence of \(n \) operations takes less than \(T(n) \) time, the amortized time per operation is \(T(n)/n \).

- We formally defined amortized time using the idea that we over-charge some operations and store the over-charge as credits/potential that can then help pay for later operations (potential method)
 - Consider performing \(n \) operations on an initial data structure \(D_0 \)
 - \(D_i \) is data structure after \(i \)th operation.
 - \(c_i \) is actual cost (time) of \(i \)th operation.
 - Potential function: \(\Phi : D_i \to \mathbb{R} \)
 - \(\tilde{c}_i \) amortized cost of \(i \)th operation: \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)
 - Given \(\Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \): \(\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \tilde{c}_i \)

- We also discussed two examples of amortized analysis
 - Stack with \textsc{MultiPop} (\(O(n) \) worst-case, \(O(1) \) amortized).
 - \textsc{Increment} on binary counter (\(O(\log n) \) worst-case, \(O(1) \) amortized).

In both cases we could argue for \(O(1) \) amortized performance without actually doing potential calculation—we just think about potential/credits as being distributed on certain parts of the data structure and let operations put and take credits while maintaining some invariant (accounting method).
2 Splay trees

- We have previously discussed binary search trees and how they can be kept balanced \((O(\log n)\) height) during insert and delete operations (red-black trees).
 - Rebalancing rather complicated
 - Extra space used for the color of each node
- We also discussed skip lists which are a lot simpler than red-black trees
 - Only guarantee \(O(\log n)\) expected performance
 - No extra information is used for rebalance information though
- Splay trees are search trees that “magically” balance themselves (no rebalance information is stored) and have amortized \(O(\log n)\) performance.
- Recall search trees:
 - Binary tree with elements in nodes
 - If node \(v\) holds element \(e\) then
 - all elements in left subtree \(< e\)
 - all elements in left subtree \(> e\)
- Splay tree:
 - Normal (possibly unbalanced) search tree \(T\)
 - All operations implemented using one basic operation, SPLAY:
 - \(SPLAY(x, T)\) searches for \(x\) in \(T\) and reorganizes tree such that \(x\)
 (or min element \(> x\) or max element \(< x\)) is in root
 - \(\text{SEARCH}(x, T)\): \(SPLAY(x, T)\) and inspect root
 - \(\text{INSERT}(x, T)\): \(SPLAY(x, T)\) and create new root with \(x\)
- **DELETE**(\(x, T\)):
 - \(\text{SPLAY}(x, T)\) and remove root → tree falls into \(T_1\) and \(T_2\).
 - \(\text{SPLAY}(x, T_1)\)
 - Make \(T_2\) right son of new root of \(T_1\) after splay

\[
\begin{array}{c}
\text{T} \\
\text{splay(x,T)} \\
\text{T1} \quad \text{T2} \\
\end{array}
\]

\[
\begin{array}{c}
\text{T} \\
\text{splay(x,T1)} \\
\text{T1' } \quad \text{T2} \\
\end{array}
\]

\[
\begin{array}{c}
\text{T1' } \quad \text{T2} \\
\end{array}
\]

- All operations perform \(O(1)\) \text{SPLAY}'s and use \(O(1)\) extra time.

\[
\begin{array}{c}
\text{T1' } \quad \text{T2} \\
\end{array}
\]

- \(O(\log n)\) amortized \text{SPLAY} gives \(O(\log n)\) amortized bound on all operations.

- **Implementation of SPLAY:**
 - Search for \(x\) like in normal search tree
 - Repeatedly rotate \(x\) up until it becomes the root.

We distinguish between three cases:

1. \(x\) is child of root (no grandparent): \text{rotate}(x)

\[
\begin{array}{c}
\text{x} \\
\text{y} \\
\text{T1} \quad \text{T2} \\
\text{T3} \\
\end{array}
\]

\[
\begin{array}{c}
\text{x} \\
\text{y} \\
\text{T1} \quad \text{T2} \\
\text{T3} \\
\end{array}
\]

2. \(x\) has parent \(y\) and grandparent \(z\) and both \(x\) and \(y\) left (right) children: \text{rotate}(y) followed by \text{rotate}(x) Note: Does not work with rotate(x) and rotate(x)

\[
\begin{array}{c}
\text{x} \\
\text{y} \\
\text{T1} \quad \text{T2} \\
\text{T3} \quad \text{T4} \\
\end{array}
\]

\[
\begin{array}{c}
\text{x} \\
\text{y} \\
\text{T1} \quad \text{T2} \\
\text{T3} \quad \text{T4} \\
\end{array}
\]

\[
\begin{array}{c}
\text{x} \\
\text{y} \\
\text{T1} \quad \text{T2} \\
\text{T3} \quad \text{T4} \\
\end{array}
\]
3. x has parent y and grandparent z and one of x and y is a left child and the other is a right child: $\text{rotate}(x)$ followed by $\text{rotate}(x)$

e.g.

- Note:
 - A SPLAY can take $O(n)$ worst-case time (very unbalanced tree)
 - But Splay trees somehow seem to stay nicely balanced

Examples: SPLAY$(1, T)$

SPLAY$(5, T)$
• Analysis:
 – We will use *accounting method* to show that all operations (SPLAY) takes $O(\log n)$ amortized time.
 * We will imagine that each node in tree has credits on it
 * We will use some credits to pay for (part of) rotations during a splay
 * We will see that we only have to place $O(\log n)$ new credits (on root) when performing an Insert or Delete
 – Note that we will ignore cost of searching for x, since the rotations cost at least as much as the search (⇒ if we can bound amortized rotation cost we also bound search cost).
 – Let $T(x)$ be tree rooted at x. We will maintain the *credit invariant* that each node x holds $\mu(x) = \lfloor \log |T(x)| \rfloor$ credits.
 – We will prove the following lemma:

| Less than or equal to $3(\mu(T) - \mu(x) + O(1))$ credits are needed to perform SPLAY(x, T) operation and maintain credit invariant |

 – Using this lemma we get that a SPLAY operation uses at most $3\lfloor \log n \rfloor + O(1) = O(\log n)$ credits (time).
 – As an INSERT or a DELETE requires us to insert at most $O(\log n)$ extra credits (on the root) more than the ones used on the SPLAY, we get the $O(\log n)$ amortized bound.

• Proof of lemma:
 – Let μ and μ' be the value of μ before and after a rotate operation in case 1, 2, or 3.
 – During a SPLAY operation we perform a number of, say $k \geq 0$, case 2 and 3 operations and possibly a case 1 operation.
 – Next time we will show that the cost of one operation is:
 * Case 1: $3(\mu'(x) - \mu(x) + O(1))$
 * Case 2: $3(\mu'(x) - \mu(x))$
 * Case 3: $3(\mu'(x) - \mu(x))$
 \[\Downarrow\]
 When we sum over all $\leq k + 1$ operations in a splay we get $3(\mu(T) - \mu(x) + O(1))$ where $\mu(x)$ is the number of credits on x before the SPLAY.
 Note that it is important that we only have the $O(1)$ term in case 1.

• Case 1:
 – We have: $\mu'(x) = \mu(y)$, $\mu'(y) \leq \mu'(x)$ and all other μ’s are unchanged.
 – To maintain invariant we use: $\mu'(x) + \mu'(y) - \mu(x) - \mu(y) = \mu'(y) - \mu(x) \leq \mu'(x) - \mu(x) \leq 3(\mu'(x) - \mu(x))$
 – To do actual rotation we use $O(1)$ credits.
• Case 2:

- We have \(\mu'(x) = \mu(z) \), \(\mu'(y) \leq \mu'(x) \), \(\mu'(z) \leq \mu'(x) \), \(\mu(y) \geq \mu(x) \) and all other \(\mu \)'s are unchanged.
- To maintain invariant we use:
 \[
 \mu'(x) + \mu'(y) + \mu'(z) - \mu(x) - \mu(y) - \mu(z) = \mu'(y) + \mu'(z) - \mu(x) - \mu(y) \\
 = (\mu'(y) - \mu(x)) + (\mu'(z) - \mu(y)) \\
 \leq (\mu'(x) - \mu(x)) + (\mu'(x) - \mu(x)) \\
 = 2(\mu'(x) - \mu(x))
 \]

- This means that we can use the remaining \(\mu'(x) - \mu(x) \) credits to pay for rotation, unless \(\mu'(x) = \mu(x) \) (can happen since \(\mu(x) = |\log |T(x)|| \)).
- We will show that if \(\mu'(x) = \mu(x) \) then \(\mu'(x) + \mu'(y) + \mu'(z) < \mu(x) + \mu(y) + \mu(z) \) which means that the operation actually releases credits we can use for the rotation:
 * Assume \(\mu'(x) = \mu(x) \) and \(\mu'(y) + \mu'(z) \geq \mu(x) + \mu(y) + \mu(z) \)
 * We have \(\mu(z) = \mu'(x) = \mu(x) \)
 \[
 \downarrow
 \mu(z) = \mu(x) = \mu(y) \\
 \text{and } \mu'(x) + \mu'(y) + \mu'(z) \geq \mu(x) + \mu(y) + \mu(z) \\
 \Downarrow
 \mu'(y) + \mu'(z) \geq 2\mu'(x)
 \]
 * Since \(\mu'(y) \leq \mu'(x) \) and \(\mu'(z) \leq \mu'(x) \) we get \(\mu'(x) = \mu'(y) = \mu'(z) \)
 * Since \(\mu(z) = \mu'(x) \) we have \(\mu(x) = \mu(y) = \mu(z) = \mu'(x) = \mu'(y) = \mu'(z) \) which cannot be true (and thus our initial assumption cannot be true):
 Let \(a \) be \(|T(x)| \) before rotations (\(a = |T1| + |T2| + 1 \))
 Let \(b \) be \(|T(z)| \) after rotations (\(b = |T3| + |T4| + 1 \))
 Since \(\mu(x) = \mu'(z) = \mu'(x) \) we have \(\lfloor \log a \rfloor = \lfloor \log b \rfloor = \lfloor \log (a + b + 1) \rfloor \) but then we have the following contradiction:
 * if \(a \leq b \): \(\lfloor \log (a + b + 1) \rfloor \geq \lfloor \log 2a \rfloor = 1 + \lfloor \log a \rfloor > \lfloor \log a \rfloor \)
 * if \(a > b \): \(\lfloor \log (a + b + 1) \rfloor \geq \lfloor \log 2b \rfloor = 1 + \lfloor \log b \rfloor > \lfloor \log b \rfloor \)

• Case 3:

- Can be proved analogously to case 2.