1 Maintaining ordered set

- Last time we started discussing the problem of maintaining an ordered set S under operations
 - Search
 - Insert
 - Delete
 - Successor
 - Predecessor

- We discussed several implementations
 - Array
 - Linked list
 - Skip lists

- We saw that in skip list all operations have expected running time $O(\log n)$
 - Next time we will discuss a data structure (red-black tree) with worst-case $O(\log n)$ running time.

- We can argue that $\Theta(\log n)$ time is optimal for searching in the decision tree model

Recall decision tree model:

- Binary tree where each node is labeled $a_i \leq a_j$
- Execution corresponds to root-leaf path
- Leaf contains result of computation

- Decision trees correspond to algorithms where we are only allowed to use comparison to gain knowledge about input.
- Decision tree for search must have n leaves (one for each element)
 \Downarrow
 Tree must have height $\Omega(\log n)$

- In the case of sorting, we saw that we could beat the $\Omega(n \log n)$ decision tree lower bound using Indirect Addressing (Radix sort)
 - we can also use indirect addressing idea on ordered set problem.
2 Direct Addressing

- Store element e in cell e of array (we assume elements are integers)

\[
\begin{array}{|c|c|c|}
\hline
0 & e & [U] -1 \\
\hline
\end{array}
\]

- **Insert/Delete/Search** in $O(1)$ time
- **Predecessor/Successor** in $O(|U|)$ time ($|U|$ is the size of "universe" U)

- Note: We could make **predecessor/successor** efficient by linking neighbor elements, but then **Insert/Delete** becomes $O(|U|)$

- Problem is that $|U|$ can be huge and often $|U| > n$
 - 32 bit integers $\Rightarrow |U| = 2^{32}$
- We can reduce space use using "hashing"

3 Hashing

- To introduce hashing, we look at direct addressing in a slightly different way:

\[
\begin{array}{|c|c|c|}
\hline
0 & e & h(e) \\
\hline
\end{array}
\]

- The main idea is to fix the table size to $m = O(n)$
 - now element e cannot be stored in cell e
 \[\downarrow\]
 We introduce **hash function** $h(e) : U \rightarrow \{0, 1, ..., m - 1\}$

We call the array the **hash table**
• Problem is of course that several elements can be stored in same cell \((m < |U|)\)
 – We call such an event a \textit{collision}

• We solve this problem using \textit{chaining}
 – Elements mapping to same cell are stored in linked list

\[\begin{array}{c}
\text{\vdots} \\
\text{\vdots} \\
\text{\vdots} \\
\end{array}\]

• worst-case: \textsc{Insert} in \(O(1)\), \textsc{Delete/Search} in \(O(\text{max chain length})\)

• \textsc{Predecessor/Successor} in \(O(m + n)\) since we have to look in all cells and chains
 (Note : We assume we can compute \(h(e)\) in \(O(1)\) time)

• Note: \textsc{Predecessor/Successor} bounds are very bad (we will not discuss them further in
 the following)
 – We call a data structure only supporting \textsc{Insert/Delete/Search} a \textit{Dictionary}
 – In a dictionary, order does not really matter
 – Lots of applications of dictionaries, e.g.
 * Symbol table in compilers
 * IP addresses to machine-name table

• Performance of hashing depends on how well \(h(e)\) spreads the elements in the hash table
 – Lets make the \textit{simple uniform hashing} assumption

 Any given element is equally likely to hash into any of the \(m\) cells

\[\downarrow\]
 – On average \(\frac{n}{m}\) elements in each chain and searching takes \(O\left(\frac{n}{m}\right)\) on the average

\[\downarrow\]
 – If we choose \(m = O(n)\) we get \(O(1)\) bounds (and \(O(n)\) space instead of \(O(|U|)\))

• How do we choose a good hashing function?
 – Often \(h(e) = e \mod m\) is used (\(e \mod m\) is remainder of \(e\) divided by \(m\))
 Example : \(m = 12, e = 100 \Rightarrow h(e) = 4\) since \(100 = 8 \cdot 12 + 4\)
 – \(m\) is often chosen to be a prime number far away from a power of 2

 If \(m = 2^p\) then \(h(e) = \text{lowest } p \text{ bits in } e\) which means that the hashing value only
 depends on some of the bits in \(e\). If data is not random—not all \(p\)-bit patterns equally
 likely—then this might be a very bad choice, we would rather have \(h(e)\) depend on all
 the bits
4 Universal Hashing

• Given hash function h, we can always find sets of elements that make hashing perform badly (n elements that map to same location)

• Like in Quick-sort and skip lists we can make sure our data structure does not perform badly on a particular input (set of inputs) using randomization
 – We choose a hash function randomly (independent of elements) from a carefully defined set of functions
 ↓
 – no worst case inputs
 – good average case behavior

• We want the set of hash functions to be universal

Let H be a finite collection of functions $U \rightarrow 0, 1, \ldots, m - 1$.
H is called universal if and only if for each $x, y \in U$ the number of functions $h \in H$ for which $h(x) = h(y)$ is precisely $|H|/m$.

– If we choose h randomly from H then the probability of collision between x and y is
 \[
 \frac{|H|/m}{|H|} = \frac{1}{m}
 \]
 ↓

– If $m > n$, then then expected number of collisions involving element e is < 1 ↓

INSERT/DELETE/SEARCH in $O(1)$ expected

– Note: The book proves the above more formally and talks about how to find universal class of hash functions (not hard but requires some number theory, so we skip it)

5 Dynamic perfect hashing

• It turns out that one can even do searches in $O(1)$ worst-case time. Out of scope of this class.

• Idea: If set of n keys is static, we could potentially find a perfect hash function h

We need to be able to store description of h compactly and compute h fast.

• Lots of research has been done on finding perfect hash functions for a given set of elements, resulting in $O(1)$ worst-case SEARCH

• The perfect hashing idea can even be made dynamic such that one also gets $O(1)$ INSERT/DELETE expected running time. Lots of recent results even improve on this.