Lecture 1: Introduction
(CLRS 1, 2.1-2.2)

1 Introduction

• Class is about designing and analyzing algorithms
 – *Algorithm*: A well-defined procedure that takes an input and computes some output.
 * Not a program (but often specified like it): An algorithm can often be implemented in several ways.
 – *Design*: Methods/ideas for developing (efficient) algorithms.
 – *Analysis*: Abstract/mathematical comparison of algorithms (without actually implementing them). Think of analysis as a measure of the quality of your algorithm and use it to justify design decisions when you write programs.

• In this class we do all these:
 – come up with solutions for a problem
 – prove that it is correct
 – analyze its running time

• Hopefully the class will show that algorithms matter!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

• Input: n integers in array $A[1..n]$
• Output: A sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in a “pseudo-code” that we will use to describe algorithms.
INSERTION-SORT(A)

For $j = 2$ to n DO
 $key = A[j]$
 $i = j - 1$
 WHILE $i > 0$ and $A[i] > key$ DO
 $A[i+1] = A[i]$
 $i = i - 1$
 OD
 $A[i+1] = key$
OD

How does it work? Example:

5 2 4 6 1 3 j=2 i=1 key=2
5 5 4 6 1 3 i=0
2 5 4 6 1 3
2 5 4 6 1 3 j=3 i=2 key=4
2 5 5 6 1 3 i=1
2 4 5 6 1 3
2 4 5 6 1 3 j=4 i=3 key=6
2 4 5 6 1
2 4 5 6 1 3 j=5 i=4 key=1
2 4 5 6 6 3 i=3
2 4 5 5 6 3 i=2
2 4 4 5 6 3 i=1
2 2 4 5 6 3 i=0
1 2 4 5 6 3
1 2 4 5 6 3 j=6 i=5 key=3
1 2 4 5 6 6 i=4
1 2 4 5 5 6 i=3
1 2 4 4 5 6 i=2
1 2 3 4 5 6 |
2.1 Correctness
We prove correctness by finding and proving certain conditions that hold at some point in the algorithm for any input. These are called invariants.

- Prove the following loop invariant: “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.
 - When j=n+1 (Termination) we have the correct output.
- The loop invariant can be proved by induction (try it!).
- Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis
- We want to predict the resource use of the algorithm.
- We can be interested in different resources (like main memory, bandwidth), but normally running time.
- To analyze running time without actually implementing the algorithm we need a mathematical model of a computer:

<table>
<thead>
<tr>
<th>Random-access machine (RAM) model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructions executed sequentially one at a time</td>
</tr>
<tr>
<td>All instructions take unit time:</td>
</tr>
<tr>
<td>* Load/Store</td>
</tr>
<tr>
<td>* Arithmetics (e.g. +, -, *, /)</td>
</tr>
<tr>
<td>* Logic (e.g. >)</td>
</tr>
<tr>
<td>Main memory is infinite</td>
</tr>
</tbody>
</table>

| The running time of an algorithm is the number of instructions it executes in the RAM model of computation. |

- RAM model not completely realistic, e.g.
 - main memory not infinite (even though we often imagine it is when we program)
 - not all memory accesses take same time (cache, main memory, disk)
 - not all arithmetic operations take same time (e.g. multiplications expensive)
 - instruction pipelining
 - other processes
- But RAM model often enough to give relatively realistic results (if we don’t cheat too much).
- Running time of insertion-sort depends on many things
• How sorted the input is
• How big the input is, etc etc

• Normally we are interested in running time as a function of \textit{input size}
 – in insertion-sort: \(n \).

• \textbf{Best-case running time:} The shortest running time for any input of size \(n \). The algorithm will never be faster than this.

• \textbf{Worst-case running time:} The longest running time for \textit{any} input of size \(n \). The algorithm will never be slower than this.

• \textbf{Average-case running time:} Be careful: average over what? Must assume an input distribution.

• Let us analyze insertion-sort by assuming that line \(i \) in the program use \(c \) RAM instructions.
 – How many times are each line of the program executed?
 – Let \(t_j \) be the number of times line 4 (the WHILE statement) is executed in the \(j \)'th iteration.

\[
\begin{array}{c|c}
\text{FOR } j = 2 \text{ to } n \text{ DO} & \text{cost} \\
key = A[j] & c \\
i = j - 1 & c \ \\
\text{WHILE } i > 0 \text{ and } A[i] > \key \text{ DO} & c \\
A[i + 1] = A[i] & \sum_{j=2}^{n} t_j \\
i = i - 1 & \sum_{j=2}^{n} (t_j - 1) \\
\text{OD} & c \\
A[i + 1] = \key & \sum_{j=2}^{n} (t_j - 1) \\
\text{OD} & c \\
\end{array}
\]

• Running time: (depends on \(t_j \)) \(T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} t_j + 2c \sum_{j=2}^{n} (t_j - 1) + c(n - 1) \)
 – \textbf{Best case:} \(t_j = 1 \) (already sorted)
 \[T(n) = cn + 2c(n - 1) + c(n - 1) + c(n - 1) \]
 \[= 5cn - 4c \]
 \[= k_1n - k_2 \]

\textbf{Linear function of } \(n \)
 – \textbf{Worst case:} \(t_j = j \) (sorted in decreasing order)
 \[T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} j + 2c \sum_{j=2}^{n} (j - 1) + c(n - 1) \]
 \[= cn + 2c(n - 1) + c\left(\frac{n(n+1)}{2} - 1\right) + 2c\left(\frac{(n-1)n}{2}\right) + c(n - 1) \]
 \[= \ldots \]
 \[= k_3n^2 + k_4n - k_5 \]
Quadratic function of n

Note: We used $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ (Next week!)

- **Average case**: We assume n numbers chosen randomly $\Rightarrow t_j = j/2$

 $T(n) = k_0 n^2 + k_7 n + k_8$

 Still Quadratic function of n

• Note:

 - We will normally be interested in worst-case running time.
 * For some algorithms, worst-case occur fairly often.
 * Average case often as bad as worst case (but not always!).
 - We will only consider order of growth of running time:
 * We already ignored cost of each statement and used the constants c.
 * We even ignored c and used k_i.
 * We simply said that best case was linear in n and worst/average case quadratic in n.

 $\Rightarrow O$-notation (best case $O(n)$, worst/average case $O(n^2)$) (next lecture!)