Practice problems: Dynamic Programming and Greedy algorithms

1. Consider the numbers $\left(A_{n}\right)_{n>0}=(1,1,3,4,8,11,21,29,55, \ldots)$ defined as follows:

$$
\begin{array}{ll}
A_{1}=A_{2}=1 & \\
A_{n}=B_{n-1}+A_{n-2} & n>2 \\
B_{1}=B_{2}=2 & \\
B_{n}=A_{n-1}+B_{n-2} & n>2
\end{array}
$$

A_{n} can be computed using the following recursive procedures:

```
ComputeA(n)
    if n<3 then
        return 1
    else
        return ComputeB(n-1)+ComputeA(n-2)
    fi
end
ComputeB(n)
    if n<3 then
        return 2
    else
        return ComputeA(n-1)+ComputeB(n-2)
    fi
end
```

(a) Show that the running time $T_{A}(n)$ of ComputeA (n) is exponential in n. (Hint: Show for example that $\left.T_{A}(n)=\Omega\left(2^{n / 2}\right)\right)$
(b) Describe and analyze a more efficient algorithm for computing A_{n}.
2. (Duke final 2001) A palindrome is a string that reads the same from front and back. Any string can be viewed as a sequence of palindromes if we allow a palindrome to consist of one letter.

Example: "bobseesanna" can e.g be viewed as being made up of palindromes in the following ways:
"bobseesanna" $=$ "bob" + "sees" + "anna"
"bobseesanna" $=$ "bob" + "s" + "ee" + "s" + "anna"
"bobseesanna" $=" \mathrm{~b} "+$ "o" + "b" + "sees" +"a" +"n" + "n" + "a"

We are interested in computing $\operatorname{MinPal}(s)$ defined as the minimum number of palindromes from which one can construct s (that is, the minimum k such that s can be written as $w_{1} w_{2} \ldots w_{k}$ where $w_{1}, w_{2}, \ldots, w_{k}$ are all palindromes).

Example: MinPal("bobseesanna")=3 since"bobseesanna" ="bob" + "sees" + "anna" and we cannot write "bobseesanna" with less than 3 palindromes.

We can compute MinPal(s) using the following formula
$\operatorname{MinPal}(s[i, j])= \begin{cases}1 & \text { if } s[i, j] \text { is palindrome }, \\ \min _{i \leq k<j}\{\operatorname{MinPal}(s[i, k])+\operatorname{MinPal}(s[k+1, j])\} & \text { otherwise }\end{cases}$ which can be implemented as follows:

```
MinPal(i,j)
    b=i, e=j
    WHILE b<e and s[b]=s[e] DO
        b=b+1
        e=e-1
    OD
    IF b>=e THEN RETURN 1 /* s[i,j] is not palindrome */
    min=j-i+1
    FOR k=i to j-1 DO
        r=MinPal(i,k)+MinPal(k+1,j)
        IF r<min THEN min=r
    END
    RETURN min
END
```

(a) Show that the running time of $\operatorname{MinPal}(s)$ is exponential in the length n of s.
(b) Describe an $O\left(n^{3}\right)$ algorithm for solving the problem.
3. In this problem we consider a piece of squared paper where each square is either empty or contains a cross. We represent such a piece a paper using an $n \times n$ array A, with $A[i, j]=$ true if the i, j 'th position contains a cross $(A[1,1]$ corresponds to the lowest left corner of the paper).
We are interested in computing for each position the maximal number of crosses in a-vertical, horizontal, or diagonal-sequence (i.e. adjacent crosses) passing through that particular position. The result should be stored in an array B.
Here is an example of such a problem and its solution.

i

B

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 6 \\
\hline 0 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 6 & 0 \\
\hline 0 & 0 & 0 & 3 & 0 & 0 & 0 & 6 & 0 & 0 \\
\hline 0 & 0 & 7 & 0 & 0 & 0 & 6 & 0 & 5 & 0 \\
\hline 3 & 3 & 7 & 0 & 0 & 6 & 0 & 5 & 2 & 0 \\
\hline 0 & 0 & 7 & 0 & 6 & 0 & 5 & 0 & 0 & 2 \\
\hline 0 & 0 & 7 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\
\hline 0 & 3 & 7 & 0 & 5 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 7 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
\hline 0 & 0 & 7 & 3 & 0 & 2 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

i

The following program solves the problem. Note that for convenience the different directions are numbered as follows:


```
for i=1 to n do
    for j=1 to n do
            B[i,j]=Count1(i,j)
    end
end
```

Count1(i,j)
if (not $A[i, j]$) then
return 0
else
return max (Count2 $(1, i, j)+C o u n t 2(5, i, j)-1$,
Count2 (2,i,j)+Count2 $(6, i, j)-1$,
Count2 $(3, i, j)+$ Count2 $(7, i, j)-1$,
Count2 $(4, i, j)+$ Count2 $(8, i, j)-1)$
end
Count2(d,i,j)
if $(i<1)$ or $(j<1)$ or $(i>n)$ or $(j>n)$ or (not $A[i, j])$ then
return 0
else if $d=1$ return $1+$ Count2 $(1, i+1, j)$
else if $d=2$ return $1+$ Count2 $2(2, i+1, j+1)$
else if d=3 return $1+$ Count2 $(3, i, j+1)$
else if $d=4$ return $1+$ Count2 $(4, i-1, j+1)$
else if d=5 return 1+Count2(5,i-1,j)
else if d=6 return 1+Count2(6,i-1,j-1)
else if $d=7$ return $1+$ Count $2(7, i, j-1)$
else if $d=8$ return $1+$ Count2 $(8, i+1, j-1)$
end
end
(a) Analyze the running time of the program.
(b) Describe an optimal $O\left(n^{2}\right)$ algorithm.
4. We want to write a sentence on a floor using prefabricated tiles. Unfortunately, we cannot buy tiles with single letters and we cannot write all sentences with the available tiles-see Eisure a fortaftcexmbl fength n and a set of m tile types $T=\left\{t_{0}, t_{1}, \ldots, t_{m-1}\right\}$ we want to decide if it is possible to write S (assuming an unlimited number of tiles). We can solve the problem with the following procedure (using the call Write $(0, n-1)$):

Write (i, j)

S can be written as follows:

$$
\begin{array}{|l|}
\hline \mathrm{C} & \mathrm{O} & \mathrm{M} & \mathrm{P} & \mathrm{U} & \mathrm{~T} & \mathrm{E} & \mathrm{R} & \mathrm{I} & \mathrm{~S} & \mathrm{C} & \mathrm{I} & \mathrm{E} & \mathrm{~N} & \mathrm{C} & \mathrm{E} & & \mathrm{I} & \mathrm{~S} & \mathrm{~F} & \mathrm{~F} & \mathrm{U} \\
\hline
\end{array}
$$

Figure 1: Writing a sentence S using tiles T.

```
If i>j THEN return TRUE
FOR }k=0\mathrm{ to }m-1 D
    IF S(i\ldotsj)=t t THEN return TRUE
For l=i to j-1 DO
    IF Write(i,l) AND Write(l + 1,j) THEN return TRUE
return FALSE
```


END Write

Here $S(i \ldots j)$ denote the subsentence of S from character i to character j (including both characters). We assume that the test $S(i \ldots j)=t_{k}$ takes time $O(j-i+1)$.
(a) Show that the running time of the algorithm is $\Omega\left(2^{n}\right)$.
(b) Design and analyze a more efficient algorithm.
5. (Duke final 2002) Let $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{m}$ and $z=z_{1} z_{2} \ldots z_{n+m}$ be three strings of length n, m, and $n+m$, respectively. We say that z is a merge of x and y if x and y can be found as two disjoint subsequences in z.

Example: algodatastrucrituthresms is a merge of algorithms and datastructures.
For $0 \leq i \leq n$ and $0 \leq j \leq m$, $\operatorname{Merge}(i, j)$ is true if $z=z_{1} z_{2} \ldots z_{i+j}$ is a merge of $x=x_{1} x_{2} \ldots x_{i}$ and $y=y_{1} y_{2} \ldots y_{j}\left(x=x_{1} x_{2} \ldots x_{i}\right.$ is the empty string if $i=0$. Similarly for y and z.)
We can compute $\operatorname{Merge}(i, j)$ using the following formula

$$
\operatorname{Merge}(i, j)= \begin{cases}X_{i j} \vee Y_{i j} & \text { if } i, j \geq 1 \\ X_{i j} & \text { if } i \geq 1, j=0 \\ Y_{i j} & \text { if } i=0, j \geq 1 \\ \text { TRUE } & \text { if } i=0, j=0\end{cases}
$$

where $X_{i j}$ is defined as

$$
\left(z_{i+j}=x_{i}\right) \wedge \operatorname{Merge}(i-1, j)
$$

and $Y_{i j}$ is defined as

$$
\left(z_{i+j}=y_{j}\right) \wedge \operatorname{Merge}(i, j-1)
$$

This can be implemented as follows

```
Merge(i,j)
    IF i=0 AND j=0 THEN RETURN True
    IF i>0 THEN X = (z[i+j]==x[i] AND Merge(i-1,j))
    IF j>0 THEN Y = (z[i+j]==y[j] AND Merge(i,j-1))
    IF i>0 and j>0 THEN RETURN X OR Y
    IF j=0 THEN RETURN X
    IF i=0 THEN RETURN Y
END
```

(a) Show that the running time of $\operatorname{Merge}(n, m)$ is exponential in n and m.
(b) Describe an $O(n m)$ algorithm for solving the problem. Remember to argue for both running time and correctness.

If $\operatorname{Merge}(n, m)=$ TruE we are interested in knowing which subsequence of z corresponds to x and which corresponds to y in a possible merge. We can characterize such a merge by the indexes of z where a new subsequence starts.

Example: The merge of algorithms and datastructures into algodatastrucrituthresms is described by the indices $1,5,14,16,18,20,23$.
(c) Describe how your $O(n m)$ algorithm can be extended such that if $\operatorname{Merge}(n, m)=$ True, the algorithm also returns the list of indexes defining a possible merge.

