
Practice problems: Dynamic Programming and Greedy

algorithms

1. Consider the numbers (An)n>0 = (1, 1, 3, 4, 8, 11, 21, 29, 55, . . .) defined as follows:

A1 = A2 = 1
An = Bn−1 + An−2 n > 2
B1 = B2 = 2
Bn = An−1 + Bn−2 n > 2

An can be computed using the following recursive procedures:

ComputeA(n)

if n<3 then

return 1

else

return ComputeB(n-1)+ComputeA(n-2)

fi

end

ComputeB(n)

if n<3 then

return 2

else

return ComputeA(n-1)+ComputeB(n-2)

fi

end

(a) Show that the running time TA(n) of ComputeA(n) is exponential in n. (Hint: Show for
example that TA(n) = Ω(2n/2))

(b) Describe and analyze a more efficient algorithm for computing An.

2. (Duke final 2001) A palindrome is a string that reads the same from front and back. Any
string can be viewed as a sequence of palindromes if we allow a palindrome to consist of one
letter.

Example: “bobseesanna” can e.g be viewed as being made up of palindromes in the
following ways:

“bobseesanna” = “bob” + “sees” + “anna”
“bobseesanna” = “bob” + “s” + “ee” + “s” + “anna”
“bobseesanna” = “b” + “o” + “b” + “sees” + “a” + “n” + “n” + “a”

We are interested in computing MinPal(s) defined as the minimum number of palindromes
from which one can construct s (that is, the minimum k such that s can be written as
w1w2 . . . wk where w1, w2, . . . , wk are all palindromes).

1



Example: MinPal(“bobseesanna”)=3 since “bobseesanna” = “bob” + “sees” + “anna”
and we cannot write “bobseesanna” with less than 3 palindromes.

We can compute MinPal(s) using the following formula

MinPal(s[i, j]) =

{

1 if s[i, j] is palindrome,
min

i≤k<j
{MinPal(s[i, k]) + MinPal(s[k + 1, j])} otherwise

which can be implemented as follows:

MinPal(i,j)

b=i, e=j

WHILE b<e and s[b]=s[e] DO

b=b+1

e=e-1

OD

IF b>=e THEN RETURN 1 /* s[i,j] is not palindrome */

min=j-i+1

FOR k=i to j-1 DO

r=MinPal(i,k)+MinPal(k+1,j)

IF r<min THEN min=r

END

RETURN min

END

(a) Show that the running time of MinPal(s) is exponential in the length n of s.

(b) Describe an O(n3) algorithm for solving the problem.

3. In this problem we consider a piece of squared paper where each square is either empty or
contains a cross. We represent such a piece a paper using an n×n array A, with A[i, j] =true
if the i, j’th position contains a cross (A[1, 1] corresponds to the lowest left corner of the
paper).

We are interested in computing for each position the maximal number of crosses in a—vertical,
horizontal, or diagonal—sequence (i.e. adjacent crosses) passing through that particular
position. The result should be stored in an array B.

Here is an example of such a problem and its solution.

2 3 0 0 0 2 0 0 2 6

0 0 3 0 0 2 0 0 6 0

0 0 0 3 0 0 0 6 0 0

0 0 7 0 0 0 6 0 5 0

3 3 7 0 0 6 0 5 2 0

0 0 7 0 6 0 5 0 0 2

0 0 7 0 0 5 0 0 0 0

0 3 7 0 5 0 0 0 0 1

0 0 7 0 0 0 2 0 0 0

0 0 7 3 0 2 0 0 1 0

A B

i i

j j

2



The following program solves the problem. Note that for convenience the different directions
are numbered as follows:

24

15

6 8
7

3

for i=1 to n do

for j=1 to n do

B[i,j]=Count1(i,j)

end

end

Count1(i,j)

if (not A[i,j]) then

return 0

else

return max(Count2(1,i,j)+Count2(5,i,j)-1,

Count2(2,i,j)+Count2(6,i,j)-1,

Count2(3,i,j)+Count2(7,i,j)-1,

Count2(4,i,j)+Count2(8,i,j)-1)

end

Count2(d,i,j)

if (i<1) or (j<1) or (i>n) or (j>n) or (not A[i,j]) then

return 0

else if d=1 return 1+Count2(1,i+1,j)

else if d=2 return 1+Count2(2,i+1,j+1)

else if d=3 return 1+Count2(3,i,j+1)

else if d=4 return 1+Count2(4,i-1,j+1)

else if d=5 return 1+Count2(5,i-1,j)

else if d=6 return 1+Count2(6,i-1,j-1)

else if d=7 return 1+Count2(7,i,j-1)

else if d=8 return 1+Count2(8,i+1,j-1)

end

end

(a) Analyze the running time of the program.

(b) Describe an optimal O(n2) algorithm.

4. We want to write a sentence on a floor using prefabricated tiles. Unfortunately, we cannot
buy tiles with single letters and we cannot write all sentences with the available tiles—see
Figure 1 for an example.Given a sentence S of length n and a set of m tile types T = {t0, t1, . . . , tm−1} we want to
decide if it is possible to write S (assuming an unlimited number of tiles). We can solve the
problem with the following procedure (using the call Write(0, n − 1)):

Write(i, j)

3



C O M P U T E R S C I E N EC I S F U N

E U

C O M

P U T E R

S

I E N EC I S

F

U N

B A R

A

D R I GG S

NR I GB O

B

C

S:

T:

V T

D

S can be written as follows:

C O M P U T E R S C I E N EC I S F U N

Figure 1: Writing a sentence S using tiles T .

If i > j THEN return TRUE

FOR k = 0 to m − 1 DO

IF S(i . . . j) = tk THEN return TRUE

For l = i to j − 1 DO

IF Write(i, l) AND Write(l + 1, j) THEN return TRUE

return FALSE

END Write

Here S(i . . . j) denote the subsentence of S from character i to character j (including both
characters). We assume that the test S(i . . . j) = tk takes time O(j − i + 1).

(a) Show that the running time of the algorithm is Ω(2n).

(b) Design and analyze a more efficient algorithm.

5. (Duke final 2002) Let x = x1x2 . . . xn and y = y1y2 . . . ym and z = z1z2 . . . zn+m be three
strings of length n, m, and n + m, respectively. We say that z is a merge of x and y if x and
y can be found as two disjoint subsequences in z.

Example: algodatastrucrituthresms is a merge of algorithms and datastructures.

For 0 ≤ i ≤ n and 0 ≤ j ≤ m, Merge(i, j) is true if z = z1z2 . . . zi+j is a merge of
x = x1x2 . . . xi and y = y1y2 . . . yj (x = x1x2 . . . xi is the empty string if i = 0. Similarly for
y and z.)

We can compute Merge(i, j) using the following formula

Merge(i, j) =



















Xij ∨ Yij if i, j ≥ 1
Xij if i ≥ 1, j = 0
Yij if i = 0, j ≥ 1
true if i = 0, j = 0

4



where Xij is defined as

(zi+j = xi) ∧ Merge(i − 1, j)

and Yij is defined as

(zi+j = yj) ∧ Merge(i, j − 1)

This can be implemented as follows

Merge(i,j)

IF i=0 AND j=0 THEN RETURN True

IF i>0 THEN X = (z[i+j]==x[i] AND Merge(i-1,j))

IF j>0 THEN Y = (z[i+j]==y[j] AND Merge(i,j-1))

IF i>0 and j>0 THEN RETURN X OR Y

IF j=0 THEN RETURN X

IF i=0 THEN RETURN Y

END

(a) Show that the running time of Merge(n,m) is exponential in n and m.

(b) Describe an O(nm) algorithm for solving the problem. Remember to argue for both
running time and correctness.

If Merge(n,m) = True we are interested in knowing which subsequence of z corresponds to
x and which corresponds to y in a possible merge. We can characterize such a merge by the
indexes of z where a new subsequence starts.

Example: The merge of algorithms and datastructures into algodatastrucrituthresms is
described by the indices 1, 5, 14, 16, 18, 20, 23.

(c) Describe how your O(nm) algorithm can be extended such that if Merge(n,m) =True,
the algorithm also returns the list of indexes defining a possible merge.

5


