Practice problems: Divide and conquer

1. (exam1 fall 2003) In this problem we consider a monotonously decreasing function $f : \mathbb{N} \rightarrow \mathbb{Z}$ (that is, a function defined on the natural numbers taking integer values, such that $f(i) > f(i + 1)$). Assuming we can evaluate f at any i in constant time, we want to find $n = \min\{i \in \mathbb{N} | f(i) \leq 0\}$ (that is, we want to find the value where f becomes negative).

We can obviously solve the problem in $O(n)$ time by evaluating $f(1), f(2), f(3), \ldots f(n)$. Describe an $O(\log n)$ algorithm. (Hint: Evaluate f on $O(\log n)$ carefully chosen values $\leq n$ and possibly at a couple of values between n and $2n$ - but remember that you do not know n initially).

2. (exam1 fall 2003) The maximum partial sum problem (MPS) is defined as follows. Given an array $A[1..n]$ of integers, find values of i and j with $1 \leq i \leq j \leq n$ such that

$$\sum_{k=i}^{j} A[k]$$

is maximized.

Example: For the array $[4, -5, 6, 7, 8, -10, 5]$, the solution to MPS is $i = 3$ and $j = 5$ (sum 21).

To help us design an efficient algorithm for the maximum partial sum problem, we consider the left position ℓ maximal partial sum problem ($LMPS_\ell$). This problem consists of finding value j with $\ell \leq j \leq n$ such that

$$\sum_{k=\ell}^{j} A[k]$$

is maximized. Similarly, the right position r maximal partial sum problem ($RMPS_r$), consists of finding value i with $1 \leq i \leq r$ such that

$$\sum_{k=i}^{r} A[k]$$

1
is maximized.

| Example: For the array \([4, -5, 6, 7, 8, -10, 5]\) the solution to e.g. \(LMPS_4\) is \(j = 5\) (sum 15) and the solution to \(RMPS_7\) is \(i = 3\) (sum 16). |

(a) Describe \(O(n)\) time algorithms for solving \(LMPS_\ell\) and \(RMPS_r\) for given \(\ell\) and \(r\).

(b) Using an \(O(n)\) time algorithm for \(LMPS_\ell\), describe a simple \(O(n^2)\) algorithm for solving \(MPS\).

(c) Using \(O(n)\) time algorithms for \(LMPS_\ell\) and \(RMPS_r\), describe an \(O(n \log n)\) divide-and-conquer algorithm for solving \(MPS\).

3. Suppose you are given an array \(A[1..n]\) of sorted integers that has been circularly shifted \(k\) positions to the right. For example, \([35, 42, 5, 15, 27, 29]\) is a sorted array that has been circularly shifted \(k = 2\) positions, while \([27, 29, 35, 42, 5, 15]\) has been shifted \(k = 4\) positions.

We can obviously find the largest element in \(A\) in \(O(n)\) time. Describe an \(O(\log n)\) algorithm.

4. In this problem we consider divide-and-conquer algorithms for building a heap \(H\) on \(n\) elements given in an array \(A\). Recall that a heap is an (almost) perfectly balanced binary tree where \(\text{key}(v) \geq \text{key}(parent(v))\) for all nodes \(v\). We assume \(n = 2^h - 1\) for some constant \(h\), such that \(H\) is perfectly balanced (leaf level is “full”).

First consider the following algorithm \(\text{SLOWHEAP}(1, n)\) which constructs (a pointer to) \(H\) by finding the minimal element \(x\) in \(A\), making \(x\) the root in \(H\), and recursively constructing the two sub-heaps below \(x\) (each of size approximately \(\frac{n-1}{2}\)).

\[
\text{SLOWHEAP}(i, j) \\
\text{If } i = j \text{ then return pointer to heap consisting of node containing } A[i] \\
\text{Find } i \leq l \leq j \text{ such that } x = A[l] \text{ is the minimum element in } A[i \ldots j] \\
\text{Exchange } A[l] \text{ and } A[j] \\
Pr_{\text{left}} = \text{SLOWHEAP}(i, \lfloor \frac{i+j-1}{2} \rfloor) \\
Pr_{\text{right}} = \text{SLOWHEAP}(\lfloor \frac{i+j-1}{2} \rfloor + 1, j - 1) \\
\text{Return pointer to heap consisting of root } r \text{ containing } x \text{ with child pointers } Pr_{\text{left}} \text{ and } Pr_{\text{right}} \\
\text{End}
\]

(a) Define and solve a recurrence equation for the running time of \(\text{SLOWHEAP}\).

Recall that given a tree \(H\) where the heap condition is satisfied except possibly at the root \(r\) (that is, \(\text{key}[r] \geq \text{key}[\text{leftchild}(r)]\) and/or \(\text{key}[r] \geq \text{key}[\text{rightchild}(r)]\) and \(\text{key}[v] \geq \text{key}[\text{parent}(v)]\) for all nodes \(v \neq r\)), we can make \(H\) into a heap by performing a \(\text{DOWN-HEAPIFY}\) operation on the root \(r\) (\(\text{DOWN-HEAPIFY}\) on node \(v\) swaps element in \(v\) with element in one of the children of \(v\) and continues down the tree until a leaf is reached or heap order is reestablished).

Consider the following algorithm \(\text{FASTHEAP}(1, n)\) which constructs (a pointer to) \(H\) by placing an arbitrary element \(x\) from \(A\) (the last one) in the root of \(H\), recursively constructing the two sub-heaps below \(x\), and finally performing a \(\text{DOWN-HEAPIFY}\) operation on \(x\) to make \(H\) a heap.
FASTHEAP(i, j)

$ Ptr_{left} = FASTHEAP(i, \lfloor \frac{i + j - 1}{2} \rfloor)$

$ Ptr_{right} = FASTHEAP(\lfloor \frac{i + j - 1}{2} \rfloor + 1, j - 1)$

Let Ptr be pointer to tree consisting of root r containing $x = A[j]$ with child
pointers Ptr_{left} and Ptr_{right}
Perform DOWN-HEAPIFY on Ptr

Return Ptr

End

b) Define and solve a recurrence equation for the running time of FASTHEAP.