1 Amortized Analysis

- Last time we discussed amortized analysis of data structures
 - A way of expressing that even though the worst-case performance of an operation can be bad, the total performance of a sequence of operations cannot be too bad.

- One way of thinking of amortized time is as being an “average”: If any sequence of \(n \) operations takes less than \(T(n) \) time, the amortized time per operation is \(T(n)/n \).

- We formally defined amortized time using the idea that we over-charge some operations and store the over-charge as credits/potential that can then help pay for later operations (potential method)
 - Consider performing \(n \) operations on an initial data structure \(D_0 \)
 - \(D_i \) is data structure after \(i \)th operation.
 - \(c_i \) is actual cost (time) of \(i \)th operation.
 - Potential function: \(\Phi : D_i \rightarrow R \)
 - \(\tilde{c}_i \) amortized cost of \(i \)th operation: \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)
 - Given \(\Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \): \(\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \tilde{c}_i \)

- We also discussed two examples of amortized analysis
 - Stack with MULTIPOP (\(O(n) \) worst-case, \(O(1) \) amortized).
 - INCREMENT on binary counter (\(O(\log n) \) worst-case, \(O(1) \) amortized).

In both cases we could argue for \(O(1) \) amortized performance without actually doing potential calculation—we just think about potential/credits as being distributed on certain parts of the data structure and let operations put and take credits while maintaining some invariant (accounting method).
2 Splay trees

- We have previously discussed binary search trees and how they can be kept balanced \(O(\log n)\) height) during insert and delete operations (red-black trees).
 - Rebalancing rather complicated
 - Extra space used for the color of each node
- We also discussed skip lists which are a lot simpler than red-black trees
 - Only guarantee \(O(\log n)\) expected performance
 - No extra information is used for rebalance information though
- Splay trees are search trees that “magically” balance themselves (no rebalance information is stored) and have amortized \(O(\log n)\) performance.
- Recall search trees:
 - Binary tree with elements in nodes
 - If node \(v\) holds element \(e\) then
 * all elements in left subtree < \(e\)
 * all elements in left subtree > \(e\)
- Splay tree:
 - Normal (possibly unbalanced) search tree \(T\)
 - All operations implemented using one basic operation, SPLAY:

\[
\text{SPLAY}(x, T) \text{ searches for } x \text{ in } T \text{ and reorganizes tree such that } x \text{ (or min element > } x \text{ or max element < } x) \text{ is in root}
\]

- \text{SEARCH}(x, T): \text{SPLAY}(x, T) \text{ and inspect root}
- \text{INSERT}(x, T): \text{SPLAY}(x, T) \text{ and create new root with } x
- **DELETE**(x, T):
 * Splay(x, T) and remove root \rightarrow tree falls into T_1 and T_2.
 * Splay(x, T_1)
 * Make T_2 right son of new root of T_1 after splay

\[
\begin{align*}
\text{splay}(x, T) & \rightarrow \\
& \begin{array}{c}
\text{T} \\
\text{T}_1 \text{T}_2
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{splay}(x, T_1) & \rightarrow \\
& \begin{array}{c}
\text{T}_1' \\
\text{T}_2
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{splay}(x, T_2) & \rightarrow \\
& \begin{array}{c}
\text{T}_1' \\
\text{T}_2
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{splay}(x, T_1) & \rightarrow \\
& \begin{array}{c}
\text{T}_1' \\
\text{T}_2
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{splay}(x, T_2) & \rightarrow \\
& \begin{array}{c}
\text{T}_1' \\
\text{T}_2
\end{array}
\end{align*}
\]

All operations perform $O(1)$ SPLAY's and use $O(1)$ extra time.

$O(\log n)$ amortized SPLAY gives $O(\log n)$ amortized bound on all operations.

- Implementation of SPLAY:
 - Search for x like in normal search tree
 - Repeatedly rotate x up until it becomes the root.
 - We distinguish between three cases:
 1. x is child of root (no grandparent): **rotate**(x)

 \[
 \begin{align*}
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2
 \end{array} \\
 \rightharpoonup \\
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \\
 \text{T}_3
 \end{array}
 \end{align*}
 \]

 \[
 \begin{align*}
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3
 \end{array} \\
 \rightharpoonup \\
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3
 \end{array}
 \end{align*}
 \]

 2. x has parent y and grandparent z and both x and y left (right) children: **rotate**(y) followed by **rotate**(x) Note: Does not work with rotate(x) and rotate(x)

 \[
 \begin{align*}
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array} \\
 \rightharpoonup \\
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array}
 \end{align*}
 \]

 \[
 \begin{align*}
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array} \\
 \rightharpoonup \\
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array}
 \end{align*}
 \]

 \[
 \begin{align*}
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array} \\
 \rightharpoonup \\
 & \begin{array}{c}
 \text{x} \\
 \text{T}_1 \text{T}_2 \text{T}_3 \text{T}_4
 \end{array}
 \end{align*}
 \]
3. x has parent y and grandparent z and one of x and y is a left child and the other is a right child: rotate(x) followed by rotate(x)

e.g.

- Note:
 - A SPLAY can take $O(n)$ worst-case time (very unbalanced tree)
 - But Splay trees somehow seem to stay nicely balanced

Examples: SPLAY(1, T)

SPLAY(5, T)
• Analysis:
 - We will use accounting method to show that all operations (SPLAY) takes $O(\log n)$ amortized time.
 * We will imagine that each node in tree has credits on it
 * We will use some credits to pay for (part of) rotations during a splay
 * We will see that we only have to place $O(\log n)$ new credits (on root) when performing an Insert or Delete
 - Note that we will ignore cost of searching for x, since the rotations cost at least as much as the search (\Rightarrow if we can bound amortized rotation cost we also bound search cost).
 - Let $T(x)$ be tree rooted at x. We will maintain the credit invariant that each node x holds $\mu(x) = \lceil\log |T(x)|\rceil$ credits.
 - We will prove the following lemma:

```
 less than or equal to $3(\mu(T) - \mu(x) + O(1))$ credits are needed to perform SPLAY($x, T$) operation and maintain credit invariant
```

- Using this lemma we get that a SPLAY operation uses at most $3\lceil\log n\rceil + O(1) = O(\log n)$ credits (time).
- As an INSERT or a DELETE requires us to insert at most $O(\log n)$ extra credits (on the root) more than the ones used on the SPLAY, we get the $O(\log n)$ amortized bound.

• Proof of lemma:
 - Let μ and μ' be the value of μ before and after a rotate operation in case 1, 2, or 3.
 - During a SPLAY operation we perform a number of, say $k \geq 0$, case 2 and 3 operations and possibly a case 1 operation.
 - Next time we will show that the cost of one operation is:
 * Case 1: $3(\mu'(x) - \mu(x) + O(1))$
 * Case 2: $3(\mu'(x) - \mu(x))$
 * Case 3: $3(\mu'(x) - \mu(x))$

\[\Downarrow\]

When we sum over all $\leq k + 1$ operations in a splay we get $3(\mu(T) - \mu(x) + O(1))$ where $\mu(x)$ is the number of credits on x before the SPLAY.

Note that it is important that we only have the $O(1)$ term in case 1.

• Case 1:
 - We have: $\mu'(x) = \mu(y), \mu'(y) \leq \mu'(x)$ and all other μ’s are unchanged.
 - To maintain invariant we use: $\mu'(x) + \mu'(y) - \mu(x) - \mu(y) = \mu'(y) - \mu(x) \leq \mu'(x) - \mu(x) \leq 3(\mu'(x) - \mu(x))$
 - To do actual rotation we use $O(1)$ credits.
• Case 2:
 - We have $\mu'(x) = \mu(z)$, $\mu'(y) \leq \mu'(x)$, $\mu'(z) \leq \mu'(x)$, $\mu(y) \geq \mu(x)$ and all other μ’s are unchanged.
 - To maintain invariant we use:
 \[
 \begin{align*}
 \mu'(x) + \mu'(y) + \mu'(z) - \mu(x) - \mu(y) - \mu(z) & = \mu'(y) + \mu'(z) - \mu(x) - \mu(y) \\
 & = (\mu'(y) - \mu(x)) + (\mu'(z) - \mu(y)) \\
 & \leq (\mu'(x) - \mu(x)) + (\mu'(x) - \mu(x)) \\
 & = 2(\mu'(x) - \mu(x))
 \end{align*}
 \]
 - This means that we can use the remaining $\mu'(x) - \mu(x)$ credits to pay for rotation, unless $\mu'(x) = \mu(x)$ (can happen since $\mu(x) = \lceil \log |T(x)| \rceil$).
 - We will show that if $\mu'(x) = \mu(x)$ then $\mu'(x) + \mu'(y) + \mu'(z) < \mu(x) + \mu(y) + \mu(z)$ which means that the operation actually releases credits we can use for the rotation:
 * Assume $\mu'(x) = \mu(x)$ and $\mu'(y) + \mu'(z) \geq \mu(x) + \mu(y) + \mu(z)$
 * We have $\mu(z) = \mu'(x) = \mu(x)$
 \[
 \begin{align*}
 \mu(z) = \mu(x) = \mu(y) \\
 \text{and } \mu'(x) + \mu'(y) + \mu'(z) & \geq \mu(x) + \mu(y) + \mu(z) \\
 & = 3\mu(x) \\
 & = 3\mu'(x)
 \end{align*}
 \]
 * Since $\mu'(y) \leq \mu'(x)$ and $\mu'(z) \leq \mu'(x)$ we get $\mu'(x) = \mu'(y) = \mu'(z)$
 * Since $\mu(z) = \mu'(x)$ we have $\mu(x) = \mu(y) = \mu(z) = \mu'(x) = \mu'(y) = \mu'(z)$ which cannot be true (and thus our initial assumption cannot be true):
 - Let a be $|T(x)|$ before rotations ($a = |T1| + |T2| + 1$)
 - Let b be $|T(z)|$ after rotations ($b = |T3| + |T4| + 1$)
 - Since $\mu(x) = \mu'(x) = \mu'(z)$ we have $\lfloor \log a \rfloor = \lfloor \log b \rfloor = \lfloor \log (a + b + 1) \rfloor$ but then we have the following contradiction:
 - if $a \leq b$: $\lfloor \log (a + b + 1) \rfloor \geq \lfloor \log 2a \rfloor = 1 + \lfloor \log a \rfloor > \lfloor \log a \rfloor$
 - if $a > b$: $\lfloor \log (a + b + 1) \rfloor \geq \lfloor \log 2b \rfloor = 1 + \lfloor \log b \rfloor > \lfloor \log b \rfloor$

• Case 3:
 - Can be proved analogously to case 2.