1 Quick-Sort Review

- The last two lectures we have considered Quick-Sort:
 - Divide $A[1...n]$ (using PARTITION) into subarrays $A' = A[1..q-1]$ and $A'' = A[q+1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 - Recursively sort A' and A''.
- We discussed how split point q produced by PARTITION only depends on last element in A.
- We discussed how randomization can be used to get good expected partition point.
- Analysis:
 - Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 - Worst case ($q = 1$): $T(n) = T(1) + T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 - Expected case for randomized algorithm: $\Theta(n \log n)$.

2 Selection

- If we could find element e such that $\text{rank}(e) = n/2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 - We could just exchange e with last element in A in beginning of PARTITION and thus make sure that A is always partition in the middle.
- We will consider a more general problem than finding the i’th element:
 - Selection problem

 $\text{SELECT}(i)$ is the i’th element in the sorted order of elements

 - Note: We do not require that we sort to find $\text{SELECT}(i)$
 - Note: $\text{SELECT}(1) =$ minimum, $\text{SELECT}(n) =$ maximum, $\text{SELECT}(n/2) =$ median
• Special cases of \texttt{SELECT}(i)

 – Minimum or maximum can easily be found in \(n - 1\) comparisons

 * Scan through elements maintaining minimum/maximum

 – Second largest/smallest element can be found in \((n - 1) + (n - 2) = 2n - 3\) comparisons

 * Find and remove minimum/maximum

 * Find minimum/maximum

 – Median:

 * Using the above idea repeatedly we can find the median in time
 \[
 \sum_{i=1}^{n/2} (n-i) = n^2/2 - \sum_{i=1}^{n/2} i = n^2/2 - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2)
 \]

 * We can easily design \(\Theta(n \log n)\) algorithm using sorting

• Can we design \(O(n)\) time algorithm for general \(i\)?

• If we could partition nicely (which is what we are really trying to do) we could solve the problem

 – by partitioning and then recursively looking for the element in one of the partitions:

\[
\text{SE\textsc{elect}}(A, p, r, i) \\
\text{IF } p = r \text{ THEN RETURN } A[p] \\
P = \text{PART\textsc{ITION}}(A, p, r) \\
k = q - p + 1 \\
\text{IF } i \leq k \text{ THEN} \\
\quad \text{RETURN } \text{SE\textsc{lect}}(A, p, q, i) \\
\text{ELSE} \\
\quad \text{RETURN } \text{SE\textsc{lect}}(A, q + 1, r, i - k) \\
\text{FI}
\]

Select \(i\)'th elements using \(\text{SE\textsc{lect}}(A, 1, n, i)\)

– If the partition was perfect \((q = n/2)\) we have

\[
T(n) = T(n/2) + n \\
= n + n/2 + n/4 + n/8 + \cdots + 1 \\
= \sum_{i=0}^{\log n} \frac{n}{2^i} \\
= n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i \\
\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i \\
= \Theta(n)
\]
Note:

* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in $T(n) = T(n-1) + n = \Theta(n^2)$ time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction ($\alpha < 1$) of the elements are eliminated we get running time $T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n)$.

- It turns out that we can modify the algorithm and get $T(n) = \Theta(n)$ in the worst case

 - The idea is to find a split element q such that we always eliminate a fraction of the elements:

 \begin{algorithm}
 \textbf{Select}(i)
 \begin{itemize}
 \item Divide n elements into groups of 5
 \item Select median of each group (⇒ $\lceil \frac{n}{5} \rceil$ selected elements)
 \item Use \textbf{Select} recursively to find median q of selected elements
 \item Partition all elements based on q
 \end{itemize}

 \begin{figure}[h]
 \centering
 \includegraphics[width=0.5\textwidth]{select_diagram.png}
 \caption{Selection algorithm diagram}
 \end{figure}

 \begin{itemize}
 \item Use \textbf{Select} recursively to find i'th element
 - If $i \leq k$ then use \textbf{Select}(i) on k elements
 - If $i > k$ then use \textbf{Select}(i - k) on $n - k$ elements
 \end{itemize}

 \end{algorithm}

 - If n' is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n')$

- Estimation of n':

 - Consider the following figure of the groups of 5 elements
 \begin{itemize}
 \item An arrow between element e_1 and e_2 indicates that $e_1 > e_2$
 \item The $\lceil \frac{n}{5} \rceil$ selected elements are drawn solid (q is median of these)
 \item Elements $> q$ are indicated with box
 \end{itemize}
– Number of elements > \(q\) is larger than \(3\left(\frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor - 2\right) \geq \frac{3n}{10} - 6\)
* We get 3 elements from each of \(\left\lfloor \frac{n}{5} \right\rfloor\) columns except possibly the one containing \(q\) and the last one.
– Similarly the number of elements < \(q\) is larger than \(\frac{3n}{10} - 6\)

\[\frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor\]

\(\downarrow\)

We recurse on at most \(n' = n - (\frac{3n}{10} - 6) = \frac{7}{10}n + 6\) elements

• So \(\text{SELECTION}(i)\) runs in time \(T(n) = \Theta(n) + T\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + T\left(\frac{7}{10}n + 6\right)\)

• Solution to \(T(n) = n + T\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + T\left(\frac{7}{10}n + 6\right)\):
 – Guess \(T(n) \leq cn\)
 – Induction:

\[
T(n) = n + T\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + T\left(\frac{7}{10}n + 6\right) \\
\leq n + c \cdot \left\lfloor \frac{n}{5} \right\rfloor + c \cdot \left(\frac{7}{10}n + 6\right) \\
\leq n + c \cdot \frac{n}{5} + c + \frac{7}{10}cn + 6c \\
= \frac{9}{10}cn + n + 7c \\
\leq cn
\]

If \(7c + n \leq \frac{1}{10}cn\) which can be satisfied (e.g. true for \(c = 20\) if \(n > 140\))

– Note: It is important that we chose every 5`th element, not all other choices will work (homework).