Recurrences

(CLRS 4.1-4.2)

• Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:

- 1. Divide P into smaller problems $P_1, P_2, P_3, \dots, P_k$.
- 2. Conquer by solving the (smaller) subproblems recursively.
- 3. Combine solutions to $P_1, P_2, \dots P_k$ into solution for P.
- Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recurrences.
- Merge-sort lead to the recurrence T(n) = 2T(n/2) + n
 - $\text{ or rather, } T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{ If } n=1 \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{ If } n>1 \end{array} \right.$
 - but we will often cheat and just solve the simple formula (equivalent to assuming that $n = 2^k$ for some constant k, and leaving out base case and constant in Θ).

Methods for solving recurrences

- 1. Substitution method
- 2. Iteration method
 - Recursion-tree method
 - (Master method)

1 Solving Recurrences with the Substitution Method

- Idea: Make a guess for the form of the solution and prove by induction.
- Can be used to prove both upper bounds O() and lower bounds $\Omega()$.
- Let's solve T(n) = 2T(n/2) + n using substitution
 - Guess $T(n) \leq cn \log n$ for some constant c (that is, $T(n) = O(n \log n)$)
 - Proof:
 - * Base case: we need to show that our guess holds for some base case (not necessarily n = 1, some small n is ok). Ok, since function constant for small constant n.
 - * Assume holds for n/2: $T(n/2) \le c\frac{n}{2} \log \frac{n}{2}$ (Question: Why not n-1?) Prove that holds for n: $T(n) \le cn \log n$

$$T(n) = 2T(n/2) + n$$

$$\leq 2(c\frac{n}{2}\log\frac{n}{2}) + n$$

$$= cn\log\frac{n}{2} + n$$

$$= cn\log n - cn\log 2 + n$$

$$= cn\log n - cn + n$$

So ok if $c \geq 1$

- Similarly it can be shown that $T(n) = \Omega(n \log n)$ Exercise!
- Similarly it can be shown that $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + n$ is $\Theta(n \lg n)$. Exercise!
- The hard part of the substitution method is often to make a good guess. How do we make a good (i.e. tight) guess??? Unfortunately, there's no "recipe" for this one. Try iteratively $O(n^3), \Omega(n^3), O(n^2), \Omega(n^2)$ and so on. Try solving by iteration to get a feeling of the growth.

2 Solving Recurrences with the Iteration/Recursion-tree Method

- In the iteration method we iteratively "unfold" the recurrence until we "see the pattern".
- The iteration method does not require making a good guess like the substitution method (but it is often more involved than using induction).
- Example: Solve $T(n) = 8T(n/2) + n^2$ (T(1) = 1)

$$T(n) = n^{2} + 8T(n/2)$$

$$= n^{2} + 8(8T(\frac{n}{2^{2}}) + (\frac{n}{2})^{2})$$

$$= n^{2} + 8^{2}T(\frac{n}{2^{2}}) + 8(\frac{n^{2}}{4}))$$

$$= n^{2} + 2n^{2} + 8^{2}T(\frac{n}{2^{2}})$$

$$= n^{2} + 2n^{2} + 8^{2}(8T(\frac{n}{2^{3}}) + (\frac{n}{2^{2}})^{2})$$

$$= n^{2} + 2n^{2} + 8^{3}T(\frac{n}{2^{3}}) + 8^{2}(\frac{n^{2}}{4^{2}}))$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 8^{3}T(\frac{n}{2^{3}})$$

$$= \dots$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + 2^{4}n^{2}n^{2} + 2^{4}n^{2}n^{2} + 2^{4}n^{2}$$

– Recursion depth: How long (how many iterations) it takes until the subproblem has constant size? *i* times where $\frac{n}{2^i} = 1 \Rightarrow i = \log n$

. . .

- What is the last term? $8^i T(1) = 8^{\log n}$

$$T(n) = n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + \dots + 2^{\log n - 1}n^{2} + 8^{\log n}$$

=
$$\sum_{k=0}^{\log n - 1} 2^{k}n^{2} + 8^{\log n}$$

=
$$n^{2} \sum_{k=0}^{\log n - 1} 2^{k} + (2^{3})^{\log n}$$

- Now $\sum_{k=0}^{\log n-1} 2^k$ is a geometric sum so we have $\sum_{k=0}^{\log n-1} 2^k = \Theta(2^{\log n-1}) = \Theta(n)$
- $(2^3)^{\log n} = (2^{\log n})^3 = n^3$

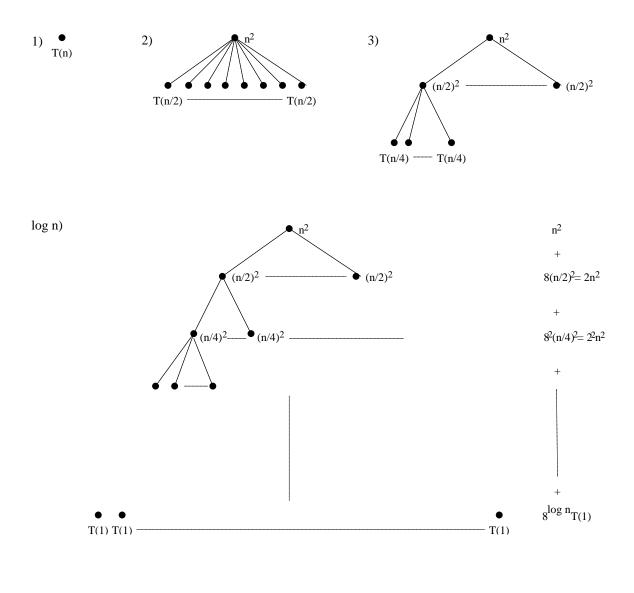
$$T(n) = n^2 \cdot \Theta(n) + n^3$$

= $\Theta(n^3)$

2.1 Recursion tree

A different way to look at the iteration method: is the recursion-tree, discussed in the book (4.2).

- we draw out the recursion tree with cost of single call in each node—running time is sum of costs in all nodes
- if you are careful drawing the recursion tree and summing up the costs, the recursion tree is a direct proof for the solution of the recurrence, just like iteration and substitution
- Example: $T(n) = 8T(n/2) + n^2$ (T(1) = 1)



 $T(n) = n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + \dots + 2^{\log n - 1}n^{2} + 8^{\log n}$

Matrix Multiplication 3

• Let X and Y be $n \times n$ matrices

$$X = \begin{cases} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{1n} \\ x_{31} & x_{32} & \cdots & x_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{cases}$$

• We want to compute $Z = X \cdot Y$

$$- z_{ij} = \sum_{k=1}^{n} X_{ik} \cdot Y_{kj}$$

- Naive method uses $\Rightarrow n^2 \cdot n = \Theta(n^3)$ operations
- Divide-and-conquer solution:

$$Z = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{cc} (A \cdot E + B \cdot G) & (A \cdot F + B \cdot H) \\ (C \cdot E + D \cdot G) & (C \cdot F + D \cdot H) \end{array} \right\}$$

- The above naturally leads to divide-and-conquer solution:
 - * Divide X and Y into 8 sub-matrices A, B, C, and D.
 - * Do 8 matrix multiplications recursively.
 - * Compute Z by combining results (doing 4 matrix additions).
- Lets assume $n = 2^c$ for some constant c and let A, B, C and D be $n/2 \times n/2$ matrices
 - * Running time of algorithm is $T(n) = 8T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^3)$
- But we already discussed a (simpler/naive) $O(n^3)$ algorithm! Can we do better?

3.1Strassen's Algorithm

• Strassen observed the following:

$$Z = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{cc} (S_1 + S_2 - S_4 + S_6) & (S_4 + S_5) \\ (S_6 + S_7) & (S_2 + S_3 + S_5 - S_7) \end{array} \right\}$$

where

$$S_1 = (B - D) \cdot (G + H)$$

$$S_2 = (A + D) \cdot (E + H)$$

$$S_3 = (A - C) \cdot (E + F)$$

$$S_4 = (A + B) \cdot H$$

$$S_5 = A \cdot (F - H)$$

$$S_6 = D \cdot (G - E)$$

$$S_7 = (C + D) \cdot E$$

– Lets test that S_6+S_7 is really $C\cdot E+D\cdot G$

$$S_6 + S_7 = D \cdot (G - E) + (C + D) \cdot E$$
$$= DG - DE + CE + DE$$
$$= DG + CE$$

- This leads to a divide-and-conquer algorithm with running time $T(n) = 7T(n/2) + \Theta(n^2)$
 - We only need to perform 7 multiplications recursively.
 - Division/Combination can still be performed in $\Theta(n^2)$ time.
- Lets solve the recurrence using the iteration method

$$\begin{split} T(n) &= 7T(n/2) + n^2 \\ &= n^2 + 7(7T(\frac{n}{2^2}) + (\frac{n}{2})^2) \\ &= n^2 + (\frac{7}{2^2})n^2 + 7^2T(\frac{n}{2^2}) \\ &= n^2 + (\frac{7}{2^2})n^2 + 7^2(7T(\frac{n}{2^3}) + (\frac{n}{2^2})^2) \\ &= n^2 + (\frac{7}{2^2})n^2 + (\frac{7}{2^2})^2 \cdot n^2 + 7^3T(\frac{n}{2^3}) \\ &= n^2 + (\frac{7}{2^2})n^2 + (\frac{7}{2^2})^2n^2 + (\frac{7}{2^2})^3n^2 \dots + (\frac{7}{2^2})^{\log n - 1}n^2 + 7^{\log n} \\ &= \sum_{i=0}^{\log n - 1} (\frac{7}{2^2})^i n^2 + 7^{\log n} \\ &= n^2 \cdot \Theta((\frac{7}{2^2})^{\log n - 1}) + 7^{\log n} \\ &= n^2 \cdot \Theta(\frac{7^{\log n}}{n^2}) + 7^{\log n} \\ &= n^2 \cdot \Theta(\frac{7^{\log n}}{n^2}) + 7^{\log n} \\ &= 0(7^{\log n}) \end{split}$$

- Now we have the following:

$$7^{\log n} = 7^{\frac{\log_7 n}{\log_7 2}} \\ = (7^{\log_7 n})^{(1/\log_7 2)} \\ = n^{(1/\log_7 2)} \\ = n^{\frac{\log_2 7}{\log_2 2}} \\ = n^{\log 7}$$

– Or in general: $a^{\log_k n} = n^{\log_k a}$

So the solution is $T(n) = \Theta(n^{\log 7}) = \Theta(n^{2.81...})$

- Note:
 - We are 'hiding' a much bigger constant in $\Theta()$ than before.
 - Currently best known bound is $O(n^{2.376..})$ (another method).
 - Lower bound is (trivially) $\Omega(n^2)$.

4 Master Method

- We have solved several recurrences using *substitution* and *iteration*.
- we solved several recurrences of the form $T(n) = aT(n/b) + n^c$ (T(1) = 1).
 - Strassen's algorithm $\Rightarrow T(n) = 7T(n/2) + n^2$ (a = 7, b = 2, and c = 2)
 - Merge-sort $\Rightarrow T(n) = 2T(n/2) + n \ (a = 2, b = 2, \text{ and } c = 1).$
- It would be nice to have a general solution to the recurrence $T(n) = aT(n/b) + n^c$.
- We do!

$$T(n) = aT\left(\frac{n}{b}\right) + n^c \quad a \ge 1, b \ge 1, c > 0$$

$$\downarrow$$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & a > b^c \\ \Theta(n^c \log_b n) & a = b^c \\ \Theta(n^c) & a < b^c \end{cases}$$

Proof (Iteration method)

$$\begin{split} T(n) &= aT\left(\frac{n}{b}\right) + n^{c} \\ &= n^{c} + a\left(\left(\frac{n}{b}\right)^{c} + aT\left(\frac{n}{b^{2}}\right)\right) \\ &= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}T\left(\frac{n}{b^{2}}\right) \\ &= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}\left(\left(\frac{n}{b^{2}}\right)^{c} + aT\left(\frac{n}{b^{3}}\right)\right) \\ &= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + a^{3}T\left(\frac{n}{b^{3}}\right) \\ &= \dots \\ &= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + \left(\frac{a}{b^{c}}\right)^{3}n^{c} + \left(\frac{a}{b^{c}}\right)^{4}n^{c} + \dots + \left(\frac{a}{b^{c}}\right)^{\log_{b}n-1}n^{c} + a^{\log_{b}n}T(1) \\ &= n^{c}\sum_{k=0}^{\log_{b}n-1}\left(\frac{a}{b^{c}}\right)^{k} + a^{\log_{b}n} \\ &= n^{c}\sum_{k=0}^{\log_{b}n-1}\left(\frac{a}{b^{c}}\right)^{k} + n^{\log_{b}a} \end{split}$$

Recall geometric sum $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$

•
$$\boxed{a < b^c}$$

$$a < b^c \Leftrightarrow \frac{a}{b^c} < 1 \Rightarrow \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k \le \sum_{k=0}^{+\infty} \left(\frac{a}{b^c}\right)^k = \frac{1}{1 - \left(\frac{a}{b^c}\right)} = \Theta(1)$$

$$a < b^c \Leftrightarrow \log_b a < \log_b b^c = c$$

$$T(n) = n^c \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}$$

$$= n^c \cdot \Theta(1) + n^{\log_b a}$$

$$= \Theta(n^c)$$
•
$$\boxed{a = b^c}$$

$$a = b^c \Leftrightarrow \frac{a}{b^c} = 1 \Rightarrow \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k = \sum_{k=0}^{\log_b n-1} 1 = \Theta(\log_b n)$$

$$a = b^c \Leftrightarrow \log_b a = \log_b b^c = c$$

$$T(n) = \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}$$

$$= n^c \Theta(\log_b n) + n^{\log_b a}$$

$$= \Theta(n^c \log_b n)$$
•
$$\boxed{a > b^c}$$

$$a > b^c \Leftrightarrow \frac{a}{b^c} > 1 \Rightarrow \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k = \Theta\left(\left(\frac{a}{b^c}\right)^{\log_b n}\right) = \Theta\left(\frac{a^{\log_b n}}{(b^c)^{\log_b n}}\right) = \Theta\left(\frac{a^{\log_b n}}{n^c}\right)$$

$$T(n) = n^c \cdot \Theta\left(\frac{a^{\log_b n}}{n^c}\right) + n^{\log_b a}$$

$$= \Theta(n^{\log_b a})$$

5 Changing variables

Sometimes reucurrences can be reduced to simpler ones by *changing variables*

• Example: Solve $T(n) = 2T(\sqrt{n}) + \log n$

Let
$$m = \log n \Rightarrow 2^m = n \Rightarrow \sqrt{n} = 2^{m/2}$$

 $T(n) = 2T(\sqrt{n}) + \log n \Rightarrow T(2^m) = 2T(2^{m/2}) + m$

Let
$$S(m) = T(2^m)$$

 $T(2^m) = 2T(2^{m/2}) + m \Rightarrow S(m) = 2S(m/2) + m$
 $\Rightarrow S(m) = O(m \log m)$
 $\Rightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$

6 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: $\Theta(\log n)$
 - Recurrence: T(n) = 1 + T(n/2)
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: T(n) = 1 + T(99n/100)
- Linear: $\Theta(N)$
 - Recurrence: T(n) = 1 + T(n-1)
 - Typical example: Single loop
 - Variations: T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n
- Quadratic: $\Theta(n^2)$
 - Recurrence: T(n) = n + T(n-1)
 - Typical example: Nested loops
- Exponential: $\Theta(2^n)$
 - Recurrence: T(n) = 2T(n-1)