1 Introduction

- We have discussed several fundamental algorithms (e.g. sorting)
- We will now turn to data structures; Play an important role in algorithms design.
 - Today we discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
 - INSERT: Insert a new element e in S
 - FINDMIN: Return the minimal element in S
 - DELETEMIN: Delete the minimal element in S

- Sometimes we are also interested in supporting the following operations:
 - CHANGE: Change the key (priority) of an element in S
 - DELETE: Delete an element from S

- We can obviously sort using a priority queue:
 - Insert all elements using INSERT
 - Delete all elements in order using FINDMIN and DELETEMIN

- Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

2.1 Array or List implementations

- The first implementation that comes to mind is ordered array:

 1 3 5 6 7 8 9 11 12 15 17

 - FINDMIN can be performed in $O(1)$ time
 - DELETEMIN and INSERT takes $O(n)$ time since we need to expand/compress the array
 after inserting or deleting element.
If the array is unordered all operations take $O(n)$ time.

We could use double linked sorted list instead of array to avoid the $O(n)$ expansion/compression cost – but INSERT can still take $O(n)$ time.

2.2 Heap implementation

One way of implementing a priority queue is using a heap

Heap definition:

- Perfectly balanced binary tree
 - lowest level can be incomplete (but filled from left-to-right)
 - For all nodes v we have $\text{key}(v) \geq \text{key}(\text{parent}(v))$

Example:

```
2
  5
  9 19
15 14
```

Heap can be implemented (stored) in two ways (at least)

- Using pointers
- In an array level-by-level, left-to-right

Example:

```
2 5 3 9 19 11 4 15 14
```

* the left and right children of node in entry i are in entry $2i$ and $2i + 1$, respectively
* the parent of node in entry i is in entry $\left\lfloor \frac{i}{2} \right\rfloor$

Properties of heap:

- Height $\Theta(\log n)$
- Minimum of S is stored in root
• Operations:

 – **INSERT**
 * Insert element in new leaf in leftmost possible position on lowest level
 * Repeatedly swap element with element in parent node until heap order is reestablished (**UP-HEAPIFY**)

 Example: Insertion of 4

 ![Tree Diagram]

 – **FINDMIN**
 * Return root element

 – **DELETEMIN**
 * Delete element in root
 * Move element from rightmost leaf on lowest level to the root (and delete leaf)
 * Repeatedly swap element with the smaller of the children elements until heap order is reestablished (**DOWN-HEAPIFY**)

 Example:

 ![Tree Diagram]

 – **CHANGE** and **DELETE** can be handled similarly in \(O(\log n)\) time

 * Note: Assuming that we know the element to be changed/deleted (we cannot search in a heap!!)

• **Correctness**: Exercise.

• **Running time**: All operations traverse at most one root-leaf path \(\Rightarrow O(\log n)\) time.

• Sorting using heap (**HeapSort**) takes \(\Theta(n \log n)\) time.

 – \(n \cdot O(\log n)\) time to insert all elements (build the heap)

 – \(n \cdot O(\log n)\) time to output sorted elements

• Sometimes we would like to build a heap faster than \(O(n \log n)\)

 – **BUILDHEAP**
 * Insert elements in any order in perfectly balanced tree
* **DOWN-HEAPIFY** all nodes level-by-level, bottom-up

- **Correctness:**
 * Induction on height of tree: When doing level i, all trees rooted at level $i - 1$ are heaps.

- **Analysis:**
 * The leaves are at height 0, the root is at height $\log n$
 * n elements $\Rightarrow \leq \left\lceil \frac{n}{2} \right\rceil$ leaves $\Rightarrow \left\lceil \frac{n}{2^h} \right\rceil$ elements at height h
 * Cost of **DOWN-HEAPIFY** on a node at height h is h
 * Total cost: $\sum_{i=1}^{\log n} h \cdot \left\lceil \frac{n}{2^i} \right\rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{n}{2^i}$
 * It can be shown that $\sum_{i=1}^{\log n} \frac{n}{2^i} = O(1) \implies$ the total buildheap cost is $\Theta(n)$

* Computing $\sum_{i=1}^{n} \frac{n}{2^i}$ and $\sum_{i=1}^{\infty} \frac{n}{2^i}$
 * Differentiate $\sum_{h=0}^{n} x^h = \frac{1-x^{n+1}}{1-x}$, respectively $\sum_{h=0}^{\infty} x^h = \frac{1}{1-x}$ (assuming $|x| < 1$)
 * $\sum_{h=0}^{\infty} h x^{h-1} = \frac{1}{(x-1)^2}$ \Rightarrow $\sum_{h=0}^{n} h x^h = \frac{x}{(x-1)^2}$ \Rightarrow $\sum_{h=0}^{n} \frac{n}{2^h} = \frac{1/2}{(1/2-1)^2} = O(1)$