Growth of Functions, Continued

CLRS 3

Last time we looked at the problem of comparing functions (running times).

$$
3 n^{2} \lg n+2 n+1 \text { vs. } 1000 n \lg ^{10} n+n \lg n+5
$$

Basically, we want to quantify how fast a function grows when $n \longrightarrow \infty$.
\Downarrow
asymptotic analysis of algorithms
More precisely, we want to compare 2 functions (running times) and tell which one is larger (grows faster) than the other. We defined O, Ω, Θ :

- f is below $g \Leftrightarrow f \in O(g) \Leftrightarrow f \leq g$
- f is above $g \Leftrightarrow f \in \Omega(g) \Leftrightarrow f \geq g$
- f is both above and below $g \Leftrightarrow f \in \Theta(g) \Leftrightarrow f=g$

Example: Show that $2 n^{2}+3 n+7 \in O\left(n^{2}\right)$
Upper and lower bounds are symmetrical: If f is upper-bounded by g then g is lower-bounded by f and we have:

$$
f \in O(g) \Leftrightarrow g \in \Omega(f)
$$

(Proof: $f \leq c \cdot g \Leftrightarrow g \geq \frac{1}{c} \cdot f$). Example: $n \in O\left(n^{2}\right)$ and $n^{2} \in \Omega(n)$
An $O()$ upper bound is not a tight bound. Example:
$2 n^{2}+3 n+5 \in O\left(n^{100}\right)$
$2 n^{2}+3 n+5 \in O\left(n^{50}\right)$
$2 n^{2}+3 n+5 \in O\left(n^{3}\right)$
$2 n^{2}+3 n+5 \in O\left(n^{2}\right)$

Similarly, an $\Omega()$ lower bound is not a tight bound. Example:
$2 n^{2}+3 n+5 \in \Omega\left(n^{2}\right)$
$2 n^{2}+3 n+5 \in \Omega(n \log n)$
$2 n^{2}+3 n+5 \in \Omega(n)$
$2 n^{2}+3 n+5 \in \Omega(\lg n)$
An asymptotically tight bound for f is a function g that is equal to f up to a constant factor: $c_{1} g \leq f \leq c_{2} g, \forall n \geq n_{0}$. That is, $f \in O(g)$ and $f \in \Omega(g)$.

Some properties:

- $f=O(g) \Leftrightarrow g=\Omega(f)$
- $f=\Theta(g) \Leftrightarrow g=\Theta(f)$
- reflexivity: $f=O(f), f=\Omega(f), f=\Theta(f)$
- transitivity: $f=O(g), g=O(h) \longrightarrow f=O(h)$

The growth of two functions f and g can be found by computing the limit $\lim _{n} \longrightarrow \frac{f(n)}{g(n)}$. Using the definition of O, Ω, Θ it can be shown that :

- if $\lim _{n \longrightarrow \infty} \frac{f(n)}{g(n)}=0$: then intuitively $f<g \Longrightarrow f=O(g)$ and $f \neq \Theta(g)$.
- if $\lim _{n \longrightarrow \infty} \frac{f(n)}{g(n)}=\infty$: then intuitively $f>g \Longrightarrow f=\Omega(g)$ and $f \neq \Theta(g)$.
- if $\lim _{n \longrightarrow \infty} \frac{f(n)}{g(n)}=c, c>0$: then intuitively $f=c \cdot g \Longrightarrow f=\Theta(g)$.

This property will be very useful when doing exercises.

Comments

- The correct way to say is that $f(n) \in O(g(n))$. Abusing notation, people normally write $f(n)=O(g(n))$.

$$
3 n^{2}+2 n+10=O\left(n^{2}\right), n=O\left(n^{2}\right), n^{2}=\Omega(n), n \log n=\Omega(n), 2 n^{2}+3 n=\Theta\left(n^{2}\right)
$$

- When we say "the running time is $O\left(n^{2}\right)$ " we mean that the worst-case running time is $O\left(n^{2}\right)$
- best case might be better.
- When we say "the running time is $\Omega\left(n^{2}\right)$ ", we mean that the best case running time is $\Omega\left(n^{2}\right)$ - the worst case might be worse.
- Insertion-sort:
- Best case: $\Omega(n)$
- Worst case: $O\left(n^{2}\right)$
- We can also say that worst case is $\Theta\left(n^{2}\right)$ because there exists an input for which insertion sort takes $\Omega\left(n^{2}\right)$. Same for best case.
- Therefore the running time is $\Omega(n)$ and $O\left(n^{2}\right)$.
- But, we cannot say that the running time of insertion sort is $\Theta\left(n^{2}\right)!!!$
- Use of O-notation makes it much easier to analyze algorithms; we can easily prove the $O\left(n^{2}\right)$ insertion-sort time bound by saying that both loops run in $O(n)$ time.
- We often use $O(n)$ in equations and recurrences: e.g. $2 n^{2}+3 n+1=2 n^{2}+O(n)$ (meaning that $2 n^{2}+3 n+1=2 n^{2}+f(n)$ where $f(n)$ is some function in $\left.O(n)\right)$.
- We use $O(1)$ to denote constant time.
- One can also define o and ω (little-oh and little-omega):
- $f(n)=o(g(n))$ corresponds to $f(n)<g(n)$
- $f(n)=\omega(g(n))$ corresponds to $f(n)>g(n)$
- we will not use them; we'll aim for tight bounds Θ.
- Not all functions are asymptotically comparable! There exist functions f, g such that f is not $O(g), f$ is not $\Omega(g)$ (and f is not $\Theta(g)$).

Growth of Standard Functions

- Polynomial of degree d :

$$
a_{0}+a_{1} n+\ldots a_{d} n^{d}=\Theta\left(n^{d}\right)
$$

where $a_{1}, a_{2}, \ldots, a_{d}$ are constants (and $a_{d}>0$).

- Any polylog grows slower than any polynomial:

$$
\log ^{a} n=O\left(n^{b}\right), \forall a>0
$$

Exercise: prove it!

- Any polynomial grows slower than any exponential with base $c>1$:

$$
n^{b}=O\left(c^{n}\right), \forall b>0, c>1
$$

Exercise: prove it!

Review of Log and Exp

- Base 2 logarithm comes up all the time (from now on we will always mean $\log _{2} n$ when we write $\log n$ or $\lg n)$.
- Note: $\log n \ll \sqrt{n} \ll n$
- Log Properties:

$$
\begin{aligned}
& -\lg ^{k} n=(\lg n)^{k} \\
& -\lg \lg n=\lg (\lg n) \\
& -a^{\log _{b} c}=c^{\log _{b} a} \\
& -a^{\log _{a} b}=b \\
& -\log _{a} n=\frac{\log _{b} n}{\log _{b} a} \\
& -\lg b^{n}=n \lg b \\
& -\lg x y=\lg x+\lg y \\
& -\log _{a} b=\frac{1}{\log _{b} a}
\end{aligned}
$$

- Exp properties:
$-a^{0}=1$
$-a^{-1}=1 / a$
$-\left(a^{m}\right)^{n}=a^{m n}$
$-a^{m} \cdot a^{n}=a^{m+n}$

