1 Introduction

- Class is about designing and analyzing algorithms
 - Algorithm: A well-defined procedure that takes an input and computes some output.
 * Not a program (but often specified like it): An algorithm can often be implemented in several ways.
 - Design: Methods/ideas for developing (efficient) algorithms.
 - Analysis: Abstract/mathematical comparison of algorithms (without actually implementing them). Think of analysis as a measure of the quality of your algorithm and use it to justify design decisions when you write programs.

- In this class we do all these:
 - come up with solutions for a problem
 - prove that it is correct
 - analyze its running time

- Hopefully the class will show that algorithms matter!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

- Input: n integers in array $A[1..n]$
- Output: A sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in a “pseudo-code” that we will use to describe algorithms.
INSERTION-SORT(A)

For \(j = 2 \) to \(n \) DO
 \(key = A[j] \)
 \(i = j - 1 \)
 WHILE \(i > 0 \) and \(A[i] > key \) DO
 \(A[i + 1] = A[i] \)
 \(i = i - 1 \)
 OD
 \(A[i + 1] = key \)
OD

How does it work? Example:

\[
\begin{array}{ccccccc}
 5 & 2 & 4 & 6 & 1 & 3 & j=2 \quad i=1 \quad key=2 \\
 5 & 5 & 4 & 6 & 1 & 3 & i=0 \\
 2 & 5 & 4 & 6 & 1 & 3 & \\
 2 & 5 & 4 & 6 & 1 & 3 & j=3 \quad i=2 \quad key=4 \\
 2 & 5 & 5 & 6 & 1 & 3 & i=1 \\
 2 & 4 & 5 & 6 & 1 & 3 & \\
 2 & 4 & 5 & 6 & 1 & 3 & j=4 \quad i=3 \quad key=6 \\
 2 & 4 & 5 & 6 & 1 & 3 & \\
 2 & 4 & 5 & 6 & 1 & 3 & j=5 \quad i=4 \quad key=1 \\
 2 & 4 & 5 & 6 & 6 & 3 & i=3 \\
 2 & 4 & 5 & 5 & 6 & 3 & i=2 \\
 2 & 4 & 4 & 5 & 6 & 3 & i=1 \\
 2 & 2 & 4 & 5 & 6 & 3 & i=0 \\
 1 & 2 & 4 & 5 & 6 & 3 & \\
 1 & 2 & 4 & 5 & 6 & 3 & j=6 \quad i=5 \quad key=3 \\
 1 & 2 & 4 & 5 & 6 & 6 & i=4 \\
 1 & 2 & 4 & 5 & 5 & 6 & i=3 \\
 1 & 2 & 4 & 4 & 5 & 6 & i=2 \\
 1 & 2 & 3 & 4 & 5 & 6 & \\
\end{array}
\]
2.1 Correctness

We prove correctness by finding and proving certain conditions that hold at some point in the algorithm for any input. These are called invariants.

• Prove the following loop invariant: “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.
 – When j=n+1 (Termination) we have the correct output.
• The loop invariant can be proved by induction (try it!).
• Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis

• We want to predict the resource use of the algorithm.
• We can be interested in different resources (like main memory, bandwidth), but normally running time.
• To analyze running time without actually implementing the algorithm we need a mathematical model of a computer:

 Random-access machine (RAM) model:
 – Instructions executed sequentially one at a time
 – All instructions take unit time:
 * Load/Store
 * Arithmetics (e.g. +, −, *, /)
 * Logic (e.g. >)
 – Main memory is infinite

• The running time of an algorithm is the number of instructions it executes in the RAM model of computation.
• RAM model not completely realistic, e.g.
 – main memory not infinite (even though we often imagine it is when we program)
 – not all memory accesses take same time (cache, main memory, disk)
 – not all arithmetic operations take same time (e.g. multiplications expensive)
 – instruction pipelining
 – other processes
• But RAM model often enough to give relatively realistic results (if we don’t cheat too much).
• Running time of insertion-sort depends on many things
– How sorted the input is
– How big the input is, etc etc

• Normally we are interested in running time as a function of input size
 – in insertion-sort: n.

• **Best-case running time:** The shortest running time for any input of size n. The algorithm will never be faster than this.

• **Worst-case running time:** The longest running time for any input of size n. The algorithm will never be slower than this.

• **Average-case running time:** Be careful: average over what? Must assume an input distribution.

• Let us analyze insertion-sort by assuming that line i in the program use c RAM instructions.

 – How many times are each line of the program executed?
 – Let t_j be the number of times line 4 (the WHILE statement) is executed in the j’th iteration.

<table>
<thead>
<tr>
<th>FOR $j = 2$ to n DO</th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>$key = A[j]$</td>
<td>c</td>
<td>n</td>
</tr>
<tr>
<td>$i = j - 1$</td>
<td>c</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$\text{WHILE } i > 0 \text{ and } A[i] > key \text{ DO}$</td>
<td>c</td>
<td>$\sum_{j=2}^{n} t_j$</td>
</tr>
<tr>
<td>$A[i + 1] = A[i]$</td>
<td>c</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>$i = i - 1$</td>
<td>c</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A[i + 1] = key$</td>
<td>c</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>OD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Running time: (depends on t_j) $T(n) = cn + 2c(n-1) + c \sum_{j=2}^{n} t_j + 2c \sum_{j=2}^{n} (t_j - 1) + c(n-1)$

 – **Best case:** $t_j = 1$ (already sorted)
 \[T(n) = cn + 2c(n-1) + c(n-1) + c(n-1) = 5cn - 4c = k_1n - k_2 \]
 Linear function of n

 – **Worst case:** $t_j = j$ (sorted in decreasing order)
 \[T(n) = cn + 2c(n-1) + c \sum_{j=2}^{n} j + 2c \sum_{j=2}^{n} (j - 1) + c(n-1) = cn + 2c(n-1) + c\left(\frac{2(n+1)}{2} - 1\right) + 2c\left(\frac{(n-1)n}{2}\right) + c(n-1) = \ldots = k_3n^2 + k_4n - k_5 \]
Quadratic function of n

Note: We used $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ (Next week!)

- **Average case:** We assume n numbers chosen randomly $\Rightarrow t_j = j/2$

 $T(n) = k_6 n^2 + k_7 n + k_8$

 Still **Quadratic function of n**

- Note:

 - We will normally be interested in worst-case running time.

 * For some algorithms, worst-case occur fairly often.

 * Average case often as bad as worst case (but not always!).

 - We will only consider order of growth of running time:

 * We already ignored cost of each statement and used the constants c.

 * We even ignored c and used k_i.

 * We simply said that best case was *linear in* n and worst/average case *quadratic in* n.

 $\Rightarrow O$-notation (best case $O(n)$, worst/average case $O(n^2)$) (next lecture!)