
CPS 231 Exam 2 – SOLUTIONS
Fall 2003

1:00 - 2:25, Tuesday November 20th
Closed book exam

NAME:

Problem Max Obtained

1 10

2 25

3 (a) 15
3 (b) 15
3 (c) 10

4 (a) 10
4 (b) 15

4 (c) 10

Total 110

1

[10 points] Problem 1:

1. Is it true that in the worst case, a red-black tree insertion requires O(1) rotations?

Solution: True, at most two rotations are performed.

2. Is it true that walking a red-black tree with n nodes in in-order takes Θ(n log n) time?

Solution: False, an in-order tree walk takes Θ(n) time.

3. Given a red-black tree with n elements, how fast can you sort them using the tree?

Solution: Θ(n) using an in-order traversal.

4. How fast can we build a red-black tree with n elements?

Solution: Each insertion into a red-black tree takes O(log n) time and we insert n
elements, so we can build the tree in time O(n log n).

5. If a data structure supports an operation foo such that a sequence of n foo’s takes
O(n log n) time in the worst case, then the amortized time of a foo operation is Θ(
) while the actual time of a single foo operation could be as low as Θ() and as
high as Θ().

Solution: The amortized time of a foo operation is Θ(log n) while the actual time of
a single foo operation could be as low as Θ(1) and as high as Θ(n log n).

2

[25 points] Problem 2:

In this problem we consider a data structure D for maintaining a set of integers under the
normal Init, Insert, Delete, and Find operations, as well as a Count operation, defined
as follows:

– Init(D): Create an empty structure D.

– Insert(D,x): Insert x in D.

– Delete(D,x): Delete x from D.

– Find(D,x): Return pointer to x in D.

– Count(D,x): Return number of elements larger than x in D.

Describe how to modify a standard red-black tree in order to implement D such that Init is
supported in O(1) time and Insert, Delete, Find, and Count are supported in O(log n)
time.

Solution: We can implement D using a red-black tree with an additional field size stored at
each node. The size field maintains the size of the subtree rooted at x. If we set the size of
leaf (nil) nodes to zero then we may define size for any node x by

size(x) = size(right(x)) + size(left(x)) + 1,

By Theorem 14.4 in CLRS, if we augment a red-black tree of n nodes with a field f at each
node x such that f can be computed using only the information stored in x, left(x), and
right(x), then we can maintain f at all nodes during insertion and deletion in O(log n) time.
In particular, we can maintain size so that Insert(D,x) and Delete(D,x) are supported in
O(log n) time.

Init(D) requires creating a nil node (null pointer) with size zero, which is done in O(1)
time.

Find(D,x) is supported in O(log n) time, as we know a tree search requires time proportional
to the height of the tree, which for a red-black tree is O(log n), and that size is not affected
at any node during the search.

For Count(D,x) we maintain a count variable c which is initially zero and start at the root
of the tree. At any node r, if the key of x is less than the key of r, we add to c the size of
r’s right subtree plus one (to count r) and move left. If they key of x is greater than the
key of r, then we move right. If the keys are equal we return c plus the size of r’s right
subtree. If x is not in the tree, then we will travel to a leaf, r will be nil, and we return c.
An implementation for Count(D,x) could be:

Count[D,x]

if x = nil return

c = 0

r = root(D)

while r != nil

if key(x) < key(r) then

3

c = c + size(right(r)) + 1

r = left(r)

else if key(x) > key(r)

r = right(r)

else if key(x) = key(r)

return c + size(right(r))

end if

end while

return c

The value c returned by Count will be the number of elements larger than x in D. This
implementation of Count correctly handles the case when x is not in D. It suffices to explain
in words without pseudocode the main idea of the Count implementation.

We now have to show that Count is supported in O(log n) time. Starting at the root, we
compare the key of x with the key of r. The procedure terminates if the keys are equal or
we encounter a nil node. Else it travels to one of the children of r. At each node O(1) work
is performed. The nodes encountered form a path downward from the root and thus the
running time of Count is proportional to the height of the tree, which is O(log n).

[40 points] Problem 3:

A pharmacist has W pills and n empty bottles. Let {p1, p2, ..., pn} denote the number of pills
that each bottle can hold.

a) Describe a greedy algorithm, which, given W and {p1, p2, ..., pn}, determines the fewest
number of bottles needed to store the pills. Prove that your algorithm is correct (that is,
prove that the first bottle chosen by your algorithm will be in some optimal solution).

Solution: Sort the n bottles in non-increasing order of capacity. Pick the first bottle, which
has largest capacity, and fill it with pills. If there are still pills left, fill the next bottle
with pills. Continue filling bottles until there are no more pills. We can sort the bottles in
O(n log n) and it takes time O(n) to fill the bottles, so our greedy algorithm has running time
O(n log n).

To show correctness, we want to show there is an optimal solution that includes the first
greedy choice made by our algorithm. Let k be the fewest number of bottles needed to store
the pills and let S be some optimal solution. Denote the first bottle chosen by our algorithm
by p′. If S contains p′, then we have shown our bottle is in some optimal solution. Otherwise,
suppose p′ is not contained in S. All bottles in S are smaller in capacity than p′ (since p′

is the largest bottle) and we can remove any of the bottles in S and empty its pills into p′,
creating a new set of bottles S′ = S − {p} ∪ {p′} that also contains k bottles – the same
number of bottles as in S′. Thus S′ is an optimal solution that includes p′ and we have shown
there is always an optimal solution that includes the first greedy choice.

Because we have shown there always exists an optimal solution that contains p′, the prob-
lem is reduced to finding an optimal solution to the subproblem of finding k − 1 bottles in
{p1, p2, ..., pn}−{p′} to hold W − p′ pills. The subproblem is of the same form as the original

4

problem, so that by induction on k we can show that making the greedy choice at every step
produces an optimal solution.

b) How would you modify your algorithm if each bottle also has an associated cost ci, and
you want to minimize the total cost of the bottles used to store all the pills?

Give a recursive formulation of this problem (formula is enough). You do not need to prove
correctness.

(Hint: Let MinPill[i, j] be the minimum cost obtainable when storing j pills using bottles

among 1 through i. Thinking of the 0-1 knapsack problem formulation may help.)

Solution: We want to find the minimum cost obtainable when storing j pills using bottles
chosen from the set bottle 1 through bottle i. This occurs either with or without bottle i.
The first case is given by the cost ci of storing pi pills in bottle i plus the minimum cost to
store j − pi pills among some subset of bottles 1 through i − 1. The second case is given by
the minimum cost obtainable when storing j pills among some subset of bottles 1 through
i − 1. The minimum of the first and second cases is the optimal solution at the ith bottle.

MinPill[i, j] =

{

0, j <= 0 or i <= 0,
min{ci + MinPill[i − 1, j − pi],MinPill[i − 1, j]} otherwise.

MinPill[n,W] solves our problem.

An implementation for MinPill[i, j] could be as follows:

MinPill[i,j]

if j <= 0 or i <= 0

return 0;

else

with = c_i + MinPill[i-1, j-p_i]

without = MinPill[i-1,j]

return min{with, without}

c) Describe briefly how you would design an algorithm for it using dynamic programming and
analyse its running time.

We want to design a dynamic programming algorithm to compute MinPill[n,W]. The idea
is to avoid repeated calculations of subproblems by solving every subproblem MinPill[i, j]
just once and saving its solution in a table. We create such a table of size n×W and initialize
its entries to null. We modify the function MinPill[n,W] to check the table before making
a recursive call to see if the value has been computed already. If so, we return the value.
Else we have to make the recursive call and store the result in the table. From the recursive
formulation given in (b) we see the cost to compute MinPill[i, j] is O(1) (we are finding the
minimum of two values) not counting recursive calls and we fill each entry in the table at most
once. The running time of the dynamic programming algorithm is then O(nW) to create the
table added to the O(1) work to compute each of the nW entries, for a total running time of
O(nW).

An implementation could be as follows:

5

MinPill[i,j]

if table(i,j) != null then

return table(i,j)

end if

if p_i <= j then

with = c_i + MinPill[i-1, j-p_i]

else

with = c_i

end if

without = MinPill[i-1,j]

table(i,j) = min{with,without}

return table(i,j)

6

[25 points] Problem 4:

In this problem we look at the amortized cost of insertion in a dynamic table. Initially the
size of the table is 1. The cost of insertion is 1 if the table is not full. When an item is inserted
into a full table, it first expands the table and then inserts the item in the new table. The
expansion is done by allocating a table of size 3 times larger than the old one and copying all
the elements of the old table into the new table.

a) What is the cost of the i-th insertion?

Solution: We are given that the cost of an insertion is 1 if the table is not full. If the table
is full then we have to copy the elements in the (old) table into the new one and insert the ith

element into the new table, so the cost of the (expensive) ith insertion is i. More precisely, we
know that the size of a new table is three times that of the old table and initially the table
is of size 1, so after k expansions the table is of size 3k, k = 0, 1, 2, . . . and the actual cost is
i = 3k + 1.

cost of insertion i =

{

i if i = 3k + 1, k = 0, 1, 2, . . .
1 otherwise

b) Using the accounting method, prove that the amortized cost of an insert in a sequence of
n inserts starting with an empty table is O(1).

Solution: In the accounting method we assign differing charges to the various operations
performed. The amount we charge an operation is its amortized cost. If the amortized cost
of an operation is higher than its actual cost, then the difference is referred to as credit that
is distributed among elements in the system to pay for future operations.

In this problem the only operation is insertion. To calculate the amortized cost for insertion,
we assume that after an expensive operation is performed – expanding the table – all the
credit is used up and we need to accumulate enough credit from the insertions between table
expansions to pay for next expansion. Expanding a table of size 3k gives a new table of size
3 · 3k = 3k+1. Following this expansion, the 3k elements we just copied have no credit to pay
for future operations. There will 2 · 3k inserts into the table before it becomes full again and
the cost of inserting element 2 · 3k + 1 is 3k+1 + 1.

Thus, to pay for the expensive insert the minimum credit c needed per each of the 2 · 3k

inexpensive insertions is the solution to the equation

c
(

2 · 3k
)

+ 1 = 3k+1 + 1,

which is c = 3/2. This is the smallest c for which the total credit in the system at any time is
non-negative. The actual cost of an insertion when the table is not full is 1, so we can assign
an insertion operation an amortized cost of 5/2.

7

EXTRA CREDIT 10 points
b) Prove the same amortized cost by defining an appropriate potential function. You can use
the standard notation num(T) for the number of elements in the table T and size(T) for the
total number of slots (maximum size) of the table.

Solution: We assume that the credit in the system (‘potential’) is 0 after performing an
expensive operation and increases with each subsequent inexpensive operation to the actual
cost of the next expensive operation.

For i = 1..n, let ci be the actual cost of operation i and let Di represent the system (or data
structure) that results after the ith operation is performed on Di−1. The amortized cost ai of
the ith operation with respect to Φ is

ai = ci + Φ(Di) − Φ(Di−1),

where Φ(Di) represents the potential in the system after operation i.

We know from (a) and (b) that if all elements inserted between table expansions have 3/2
credits then we can pay for an expensive insertion into a full table (the table is full when
num(T) = size(T)). The table is 1/3 full after expansion, that is, num(T) = size(T)/3,
and the potential in the system is 0 (the potential contributed by the size(T)/3 elements
in the table is already used). In general, when we have num(T) elements in the table,
num(T) − size(T)/3 insertions have each contributed 3/2 to the potential in the system.
Thus we can define our potential function as

Φ(Di) =
3

2

(

num(T) −
size(T)

3

)

.

When num(T) = size(T)/3, Φ(Di) = 0 and when num(T) = size(T), Φ(Di) = size(T). The
table is at least 1/3 filled at any time, so that num(T) ≥ size(T)/3, and num(T) ≤ size(T)
since when num(T) = size(T) a new table is created at the next insertion, thus Φ(Di) ≥ 0
for all i.

To prove the same amortized cost as in (b), we consider the two possible cases when performing
an insert operation. If the table is not full, we have

ai+1 = ci+1 + Φ(Di+1) − Φ(Di)

= 1 + 3/2 (num(T) + 1 − size(T)/3) − 3/2 (num(T) − size(T)/3)

= 5/2.

If the table is full (i.e. num(T) = size(T)),

ai+1 = ci+1 + Φ(Di+1) − Φ(Di)

= num(T) + 1 + 3/2 (num(T) + 1 − size(T)) − 3/2 (num(T) − size(T)/3)

= 5/2 + num(T) − size(T)

= 5/2.

8

