CPS 231 Exam 1 Fall 2003
1:00-2:25, Tuesday October 14th
Closed book exam

NAME:

Problem 1	Max 10	Obtained
$2(\mathrm{a})$	10	
$2(\mathrm{~b})$	10	
$3(\mathrm{a})$	10	
$3(\mathrm{~b})$	10	
4	15	
$5(\mathrm{a})$	10	
$5(\mathrm{~b})$	10	
$5(\mathrm{c})$	15	
Total	100	

Comments:

- You can use any of the algorithms covered in class without describing them.
- When describing an algorithm, remember to include an argument for both correctness and running time.

[10 points] Problem 1:

1. The summation $\sum_{i=0}^{\lg n}\left(\frac{1}{2}\right)^{i}$ is $\Theta(\quad)$.
2. is it true that $\sqrt{n}=O\left(2^{\log _{2} n}\right)$?
3. The best case running time of Quicksort is $\Theta(\quad)$.
4. Given a heap with n elements, is it true that you can search for an element in $O(\log n)$ time?
5. Assume you have n positive integers in the range 1 through k. Counting Sort sorts the n integers in $O(\quad)$ time using O () additional space.
[20 points] Problem 2:
a) Using the iteration method find an asymptotic tight bound for the recurrence:

$$
T(n)= \begin{cases}1 & \text { if } n \leq 3 \\ T(\sqrt{n})+1 & \text { if } n \geq 4\end{cases}
$$

b) Show using the substitution method (induction) that the recurrence above has solution $T(n)=O(\lg \lg n)$.

[20 points] Problem 3:

Let A be an array of n (not necessarily distinct) integers.
a) Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n / 2\rceil$ times in A.
b) Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n / 4\rceil$ times in A.

[15 points] Problem 4:

In this problem we consider a monotonically decreasing function $f: N \rightarrow Z$ (that is, a function defined on the natural numbers taking integer values, such that $f(i)>f(i+1))$. Assuming we can evaluate f at any i in constant time, we want to find $n=\min \{i \in N \mid f(i) \leq 0\}$ (that is, we want to find the value where f becomes negative).

We can obviously solve the problem in $O(n)$ time by evaluating $f(1), f(2), f(3), \ldots f(n)$. Describe an $O(\log n)$ algorithm.
(Hint: Evaluate f on $O(\log n)$ carefully chosen values between 1 and $2 n$ - but remember that you do not know n initially).

[35 points] Problem 5:

The maximum partial sum problem (MPS) is defined as follows. Given an array $A[1 . . n]$ of integers, find values of i and j with $1 \leq i \leq j \leq n$ such that

$$
\sum_{k=i}^{j} A[k]
$$

is maximized.

Example: For the array $[4,-5,6,7,8,-10,5]$, the solution to $M P S$ is $i=3$ and $j=5$ (sum 21).

To help us design an efficient algorithm for the maximum partial sum problem, we consider the left position ℓ maximal partial sum problem ($L M P S_{\ell}$). This problem consists of finding value j with $\ell \leq j \leq n$ such that

$$
\sum_{k=\ell}^{j} A[k]
$$

is maximized. Similarly, the right position r maximal partial sum problem $\left(R M P S_{r}\right)$, consists of finding value i with $1 \leq i \leq r$ such that

$$
\sum_{k=i}^{r} A[k]
$$

is maximized.

Example: For the array $[4,-5,6,7,8,-10,5]$ the solution to e.g. $L M P S_{4}$ is $j=5$ (sum 15) and the solution to $R M P S_{7}$ is $i=3$ (sum 16).
a) Describe $O(n)$ time algorithms for solving $L M P S_{\ell}$ and $R M P S_{r}$ for given ℓ and r.
b) Using an $O(n)$ time algorithm for $L M P S_{\ell}$, describe a simple $O\left(n^{2}\right)$ algorithm for solving $M P S$.
c) Using $O(n)$ time algorithms for $L M P S_{\ell}$ and $R M P S_{r}$, describe an $O(n \log n)$ divide-andconquer algorithm for solving MPS.

