
CPS 231 Exam 1
Fall 2003

1:00-2:25, Tuesday October 14th
Closed book exam

NAME:

Problem Max Obtained
1 10

2 (a) 10
2 (b) 10

3 (a) 10
3 (b) 10

4 15

5 (a) 10
5 (b) 10
5 (c) 15

Total 100

Comments:

• You can use any of the algorithms covered in class without describing them.

• When describing an algorithm, remember to include an argument for both correctness and
running time.

1

[10 points] Problem 1:

1. The summation
∑lg n

i=0(
1
2
)i is Θ().

2. is it true that
√

n = O(2log
2

n) ?

3. The best case running time of Quicksort is Θ().

4. Given a heap with n elements, is it true that you can search for an element in O(log n)
time?

5. Assume you have n positive integers in the range 1 through k. Counting Sort sorts the
n integers in O() time using O() additional space.

2

[20 points] Problem 2:

a) Using the iteration method find an asymptotic tight bound for the recurrence:

T (n) =

{

1 if n ≤ 3
T (

√
n) + 1 if n ≥ 4

3

b) Show using the substitution method (induction) that the recurrence above has solution
T (n) = O(lg lg n).

4

[20 points] Problem 3:

Let A be an array of n (not necessarily distinct) integers.

a) Describe an O(n)-algorithm to test whether any item occurs more than dn/2e times in A.

b) Describe an O(n)-algorithm to test whether any item occurs more than dn/4e times in A.

5

[15 points] Problem 4:

In this problem we consider a monotonically decreasing function f : N → Z (that is, a
function defined on the natural numbers taking integer values, such that f(i) > f(i+1)). As-
suming we can evaluate f at any i in constant time, we want to find n = min{i ∈ N |f(i) ≤ 0}
(that is, we want to find the value where f becomes negative).

n21

We can obviously solve the problem in O(n) time by evaluating f(1), f(2), f(3), . . . f(n).
Describe an O(log n) algorithm.

(Hint: Evaluate f on O(log n) carefully chosen values between 1 and 2n - but remember that
you do not know n initially).

6

[35 points] Problem 5:

The maximum partial sum problem (MPS) is defined as follows. Given an array A[1..n] of
integers, find values of i and j with 1 ≤ i ≤ j ≤ n such that

j
∑

k=i

A[k]

is maximized.

Example: For the array [4,-5,6,7,8,-10,5], the solution to MPS is i = 3 and j = 5 (sum 21).

To help us design an efficient algorithm for the maximum partial sum problem, we consider
the left position ` maximal partial sum problem (LMPS`). This problem consists of finding
value j with ` ≤ j ≤ n such that

j
∑

k=`

A[k]

is maximized. Similarly, the right position r maximal partial sum problem (RMPSr), consists
of finding value i with 1 ≤ i ≤ r such that

r
∑

k=i

A[k]

is maximized.

Example: For the array [4,-5,6,7,8,-10,5] the solution to e.g. LMPS4 is j = 5 (sum 15) and
the solution to RMPS7 is i = 3 (sum 16).

7

a) Describe O(n) time algorithms for solving LMPS` and RMPSr for given ` and r.

8

b) Using an O(n) time algorithm for LMPS`, describe a simple O(n2) algorithm for solving
MPS.

9

c) Using O(n) time algorithms for LMPS` and RMPSr, describe an O(n log n) divide-and-
conquer algorithm for solving MPS.

10

