Minimum Spanning Trees
(CLRS 23)

- Problem: Given connected, undirected graph $G = (V, E)$ where each edge (u, v) has weight $w(u, v)$. Find acyclic set $T \subseteq E$ connecting all vertices in V with minimal weight $w(T) = \sum_{(u,v) \in T} w(u,v)$.
- An acyclic set connecting all vertices is called a spanning tree. We want to find a spanning tree of minimal weight. We use minimum spanning tree as short for minimum weight spanning tree).
- MST problem has many applications
 - For example, think about connecting cities with minimal amount of wire or roads (cities are vertices, weight of edges are distances between city pairs).
- Example:

 1 PRIM’s algorithm
 - *Greedy* algorithm for computing MST:
 - Start with spanning tree containing arbitrary vertex r and no edges
 - Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree
 - Implementation:
 - To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of v to v in the priority queue).
For each node u maintain $\text{visit}(u)$ ($(u, \text{visit}(u))$ is the currently best edge connecting it to the tree.)

PRIM(r)

For each $v \in V$ DO

$\text{INSERT}(PQ, v, \infty)$

$\text{DECREASE-KEY}(PQ, r, 0)$

WHILE PQ not empty DO

$u = \text{DELETEMIN}(PQ)$

(output edge $(u, \text{visit}(u))$ as part of MST)

For each $(u, v) \in E$ DO

IF $v \in PQ$ and $w(u, v) < \text{key}(v)$ THEN

$\text{visit}[v] = u$

$\text{DECREASE-KEY}(PQ, v, w(u, v))$

- On the example graph, the greedy algorithm would work as follows (starting at vertex a):

![Graph Diagrams]
• Analysis:
 – While loop runs $|V|$ times \Rightarrow we perform $|V|$ DELETEMIN's
 – We perform at most one DECREASE-KEY for each of the $|E|$ edges
 \[O((|V| + |E|) \log |V|) = O(|E| \log |V|) \] running time.

• Correctness:
 – When designing a greedy algorithm the hard part is to prove that it works correctly.
 – We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms:

Some definitions
 * A cut $(S, V \setminus S)$ is a partition of V into sets S and $V \setminus S$
 * A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \setminus S$ or $v \in S$ and $u \in V \setminus S$
 * A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut

Example: Cut S respects T

\[\text{"cut"} \]

$V \setminus S$
• **Theorem:** If $G = (V, E)$ is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge $e = (u, v)$ crossing S.

• Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut consist of current spanning tree.

• Proof:

 – Let T^* be MST containing T
 – If $e \in T^*$ we are done
 – If $e \notin T^*$:
 * There must be (at least) one other edge $(x, y) \in T^*$ crossing the cut S such that there is a unique path from u to v in T^* (T^* is spanning tree)
 * This path together with e forms a cycle
 * If we remove edge (x, y) from T^* and add e instead, we still have spanning tree
 * New spanning tree must have same weight as T^* since $w(u, v) \leq w(x, y)$
 ↓
 There is a MST containing T and e.

• The Theorem allows us to describe a very abstract greedy algorithm for MST:

\[
\begin{align*}
T &= \emptyset \\
\text{While } |T| \leq |V| - 1 \text{ DO} \\
& \quad \text{Find cut } S \text{ respecting } T \\
& \quad \text{Find minimal edge } e \text{ crossing } S \\
& \quad T = T \cup \{e\}
\end{align*}
\]

 – Prim’s algorithm follows this abstract algorithm.
 – Kruskal’s algorithm is another implementation of the abstract algorithm.
2 Kruskal’s Algorithm

- Kruskal’s algorithm is another implementation of the abstract algorithm.
- Idea in Kruskal’s algorithm:
 - Start with $|V|$ trees (one for each vertex)
 - Consider edges E in increasing order; add edge if it connects two trees
- Example:

- Implementation:

 We need (Union-Find) data structure that supports:
- **MAKE-SET(v)**: Create set consisting of v
- **UNION-SET(u, v)**: Unite set containing u and set containing v
- **FIND-SET(u)**: Return unique representative for set containing u

KRUSKAL

\[T = \emptyset \]

FOR each vertex \(v \in V \) MAKE-SET(v)

Sort edges of \(E \) in increasing order by weight

FOR each edge \(e = (u, v) \in E \) in order DO

IF FIND-SET(u) \(\neq \) FIND-SET(v) THEN

\[T = T \cup \{e\} \]

UNION-SET(u, v)

• Analysis:

 - We use \(O(|E| \log |E|) \) time to sort edges and we perform \(|V| \) MAKE-SET, \(|V| - 1 \) UNION-SET, and \(2|E|\) FIND-SET operations.

 - We will discuss a simple solution to the **Union-Find problem** such that MAKE-SET and FIND-SET take \(O(1) \) time and UNION-SET takes \(O(\log V) \) time amortized.

 \[\downarrow \]

 Kruskal's algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|) \) like Prim's algorithm.

• Correctness

 - follows from Theorem above: If minimal edge connects two trees then there exists a cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

• The **Union-Find problem**: Maintain a set system under:

 - **MAKE-SET(v)**: Create set consisting of v
 - **UNION-SET(u, v)**: Unite set containing u and set containing v
 - **FIND-SET(u)**: Return unique representative for set containing u

• Simple solution:

 - Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:
Sets

- **Make-Set**(v): Make a list with one element ⇒ \(O(1)\) time
- **Find-Set**(u): Follow pointer and return unique representative ⇒ \(O(1)\) time
- **Union-Set**(u, v): Link first element in list with unique representative **Find-Set**(u) after last element in list with unique representative **Find-Set**(v) ⇒ \(O(|V|)\) time (as we have to update all unique representative pointers in list containing u)

• With this simple solution the \(|V|−1\) **Union-Set** operations in Kruskal’s algorithm may take \(O(|V|^2)\) time.

• We can improve the performance of **Union-Set** with a very simple modification: Always link the smaller list after the longer list (⇒ update the pointers of the smaller list)

 - One **Union-Set** operation can still take \(O(|V|)\) time, but the \(|V|−1\) **Union-Set** operations takes \(O(|V| \log |V|)\) time altogether (one **Union-Set** takes \(O(\log |V|)\) time amortized):

 * Total time is proportional to number of unique representative pointer changes
 * Consider element u:
 After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before
 \(\Downarrow\)
 After \(k\) pointer changes, u is in list of size at least \(2^k\)
 \(\Downarrow\)
 Pointer can be changed at most \(\log |V|\) times.

• With improvement, Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O(|E| + |V| \log |E|) = O(|E| \log |V|)\) like Prim’s algorithm.