1 Basic Graph Definitions

- A graph $G = (V, E)$ consists of a finite set of vertices V and a finite set of edges E.
 - Directed graphs: E is a set of ordered pairs of vertices (u, v) where $u, v \in V$

 - Undirected graph: E is a set of unordered pairs of vertices $\{u, v\}$ where $u, v \in V$

 - Edge (u, v) is incident to u and v
 - Degree of vertex in undirected graph is the number of edges incident to it.
 - In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.
 - A path from u_1 to u_2 is a sequence of vertices $< u_1 = v_0, v_1, v_2, \ldots, v_k = u_2 >$ such that $(v_i, v_{i+1}) \in E$ (or $\{v_i, v_{i+1}\} \in E$)
 - We say that u_2 is reachable from u_1
 - The length of the path is k
 - It is a cycle if $v_0 = v_k$
 - An undirected graph is connected if every pair of vertices are connected by a path
 - The connected components are the equivalence classes of the vertices under the “reachability” relation. (All connected pair of vertices are in the same connected component).
• A directed graph is *strongly connected* if every pair of vertices are reachable from each other

 – The *strongly connected components* are the equivalence classes of the vertices under the “mutual reachability” relation.

• Graphs appear all over the place in all kinds of applications, e.g:

 – Trees ($|E| = |V| - 1$)
 – Connectivity/dependencies (house building plans, WWW-page connections = internet graph)

• Often the edges (u, v) in a graph have weights $w(u, v)$, e.g.

 – Road networks (distances)
 – Cable networks (capacity)

1.1 **Representation**

• *Adjacency-list* representation:

 – Array of $|V|$ list of edges incident to each vertex.

Examples:

- Note: For undirected graphs, every edge is stored twice.
- If graph is weighted, a weight is stored with each edge.

• *Adjacency-matrix* representation:
- \(|V| \times |V| \) matrix \(A \) where

\[
a_{ij} = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}
\]

Examples:

- Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal \((A^T = A)\).
- If graph is weighted, weights are stored instead of one's.

- Comparison of matrix and list representation:

<table>
<thead>
<tr>
<th>Adjacency list</th>
<th>Adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Good if graph sparse ((</td>
<td>E</td>
</tr>
<tr>
<td>No quick access to ((u, v))</td>
<td>(O(1)) access to ((u, v))</td>
</tr>
</tbody>
</table>

- We will use adjacency list representation unless stated otherwise \(O(|V| + |E|)\) space).

2 Graph traversal

- There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way
 - Breadth-first
 - Depth-first

- We can use them in many fundamental algorithms, e.g finding cycles, connected components, ...
2.1 Breadth-first search (BFS)

- Main idea:
 - Start at some source vertex \(s \) and visit,
 - All vertices at distance 1,
 - Followed by all vertices at distance 2,
 - Followed by all vertices at distance 3,
 :

- BFS corresponds to computing shortest path distance (number of edges) from \(s \) to all other vertices.

- To control progress of our BFS algorithm, we think about coloring each vertex
 - \textit{White} before we start,
 - \textit{Gray} after we visit the vertex but before we have visited all its adjacent vertices,
 - \textit{Black} after we have visited the vertex and all its adjacent vertices (all adjacent vertices are gray).

- We use a queue \(Q \) to hold all gray vertices—vertices we have seen but are still not done with.

- We remember from which vertex a given vertex \(v \) is colored gray—i.e. the node that discovered \(v \) first; this is called parent\([v]\).

- Algorithm:

\[
\begin{align*}
\text{BFS}(s) & \\
\text{color}[s] &= \text{gray} \\
\text{d}[s] &= 0 \\
\text{ENQUEUE}(Q, s) \\
\text{WHILE} & \ Q \text{ not empty} \ DO \\
\qquad & \text{DEQUEUE}(Q, u) \\
\qquad & \text{FOR} \ (u, v) \in E \ DO \\
\qquad & \quad \text{IF} \ \text{color}[v] = \text{white} \ \text{THEN} \\
\qquad & \quad \quad \text{color}[v] = \text{gray} \\
\qquad & \quad \quad \text{d}[v] = \text{d}[u] + 1 \\
\qquad & \quad \quad \text{parent}[v] = u \\
\qquad & \quad \quad \text{ENQUEUE}(Q, v) \\
\qquad & \quad \FI \\
\qquad & \text{color}[u] = \text{black} \\
\text{OD}
\end{align*}
\]
- Algorithm runs in $O(|V| + |E|)$ time
- Example (for directed graph):

 a) ![Diagram](image1)
 b) ![Diagram](image2)
 c) ![Diagram](image3)
 d) ![Diagram](image4)
 e) ![Diagram](image5)
 f) ![Diagram](image6)
 g) ![Diagram](image7)
 h) ![Diagram](image8)
 i) ![Diagram](image9)

- Note:
 - parent$[v]$ forms a tree; **BFS-tree**.
 - $d[v]$ contains length of shortest path from s to v. (Prove by induction)
 - We can use parent$[v]$ to find the shortest path from s to a given vertex.
- If graph is not connected we have to try to start the traversal at all nodes.

```plaintext
FOR each vertex $u \in V$ DO
    IF color$[u] = \text{white}$ THEN BFS($u$)
OD
```
– Note: We can use algorithm to compute connected components in $O(|V| + |E|)$ time.

2.2 Depth-first search (DFS)

• If we use stack instead of queue Q we get another traversal order; depth-first
 – We go “as deep as possible”,
 – Go back until we find unexplored adjacent vertex,
 – Go as deep as possible,
 ;
• Often we are interested in “start time” and “finish time” of vertex u
 – Start time ($d[u]$): indicates at what “time” vertex is first visited.
 – Finish time ($f[u]$): indicates at what “time” all adjacent vertices have been visited.
• We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE, or, we can write a recursive DFS procedure
 – We will color a vertex gray when we first meet it and black when we finish processing all adjacent vertices.

• Algorithm:

```
DFS(u)
  color[u] = gray
  d[u] = time
  time = time + 1
  FOR (u, v) $\in$ E DO
    IF color[v] = white THEN
      parent[v] = u
      DFS(v)
    FI
  OD
  color[u] = black
  f[u] = time
  time = time + 1
```

• Algorithm runs in $O(|V| + |E|)$ time
 – As before we can extend algorithm to unconnected graphs and we can use it to detect cycles in $O(|V| + |E|)$ time.
• Example:

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

l)
• As previously parent\[v\] forms a tree; DFS-tree

 – Note: If \(u\) is descendent of \(v\) in DFS-tree then \(d[v] < d[u] < f[u] < f[v]\)

3 Topological sorting

• Definition: Topological sorting of directed acyclic graph \(G = (V, E)\) is a linear ordering of vertices \(V\) such that \((u, v) \in E \Rightarrow u\) appear before \(v\) in ordering.

• Topological ordering can be used in scheduling:

 – Example: Dressing (arrow implies “must come before”)

We want to compute order in which to get dressed. One possibility:
The given order is one possible topological order.

- **Algorithm**: Topological order just reverse DFS finish time ($\Rightarrow O(|V| + |E|)$ running time).

- **Correctness**: $(u, v) \in E \iff f(v) < f(u)$

 - Proof: When (u, v) is explored by DFS algorithm, v must be white or black (gray \Rightarrow cycle).
 - v white: v visited and finished before u is finished $\Rightarrow f(v) < f(u)$
 - v black: v already finished $\Rightarrow f(v) < f(u)$

- **Alternative algorithm**: Count in-degree of each vertex and repeatedly number and remove in-degree 0 vertex and its outgoing edges: Homework.