Lecture 1: Introduction
(CLRS 1+2.1-2.2)

1 Introduction

- Class is about designing and analyzing algorithms
 - Algorithm: A well-defined procedure that takes an input and computes some output.
 - Not a program (but often specified like it): An algorithm can often be implemented in several ways.
 - Design: Methods/ideas for developing (efficient) algorithms.
 - Analysis: Abstract/mathematical comparison of algorithms (without actually implementing them). Think of analysis as a measure of the quality of your algorithm and use it to justify design decisions when you write programs.

- In this class we do all these:
 - come up with solutions for a problem
 - prove that it is correct
 - analyze its running time

- Hopefully the class will show that algorithms matter!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

- Input: n integers in array $A[1..n]$
- Output: A sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in a (Pascal like) pseudo-code that we will use to describe algorithms.
INSERTION-SORT(A)

For \(j = 2 \) to \(n \) DO
\[key = A[j] \]
\[i = j - 1 \]
WHILE \(i > 0 \) and \(A[i] > key \) DO
\[A[i + 1] = A[i] \]
\[i = i - 1 \]
OD
\[A[i + 1] = key \]
OD

How does it work? Example:

\[
\begin{array}{ccccccc}
5 & 2 & 4 & 6 & 1 & 3 & \text{j=2 i=1 key=2} \\
5 & 5 & 4 & 6 & 1 & 3 & \text{i=0} \\
2 & 5 & 4 & 6 & 1 & 3 & \\
2 & 5 & 4 & 6 & 1 & 3 & \text{j=3 i=2 key=4} \\
2 & 5 & 5 & 6 & 1 & 3 & \text{i=1} \\
2 & 4 & 5 & 6 & 1 & 3 & \\
2 & 4 & 5 & 6 & 1 & 3 & \text{j=4 i=3 key=6} \\
2 & 4 & 5 & 6 & 1 & 3 & \\
2 & 4 & 5 & 6 & 1 & 3 & \text{j=5 i=4 key=1} \\
2 & 4 & 5 & 6 & 6 & 3 & \text{i=3} \\
2 & 4 & 5 & 5 & 6 & 3 & \text{i=2} \\
2 & 4 & 4 & 5 & 6 & 3 & \text{i=1} \\
2 & 2 & 4 & 5 & 6 & 3 & \text{i=0} \\
1 & 2 & 4 & 5 & 6 & 3 & \\
1 & 2 & 4 & 5 & 6 & 3 & \text{j=6 i=5 key=3} \\
1 & 2 & 4 & 5 & 6 & 6 & \text{i=4} \\
1 & 2 & 4 & 5 & 5 & 6 & \text{i=3} \\
1 & 2 & 4 & 4 & 5 & 6 & \text{i=2} \\
1 & 2 & 3 & 4 & 5 & 6 & \\
\end{array}
\]
2.1 Correctness

We prove correctness by finding and proving certain conditions that hold at some point in the algorithm for any input. These are called invariants.

- Prove the following loop invariant: “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.
 - When j=n+1 (Termination) we have the correct output.
- The loop invariant can be proved by induction (try it!).
- Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis

- We want to predict the resource use of the algorithm.
- We can be interested in different resources (like main memory, bandwidth), but normally running time.
- To analyze running time without actually implementing the algorithm we need a mathematical model of a computer:

 Random-access machine (RAM) model:
 - Instructions executed sequentially one at a time
 - All instructions take unit time:
 - Load/Store
 - Arithmetics (e.g. +, −, *, /)
 - Logic (e.g. >)
 - Main memory is infinite

- The running time of an algorithm is the number of instructions it executes in the RAM model of computation.
- RAM model not completely realistic, e.g.
 - main memory not infinite (even though we often imagine it is when we program)
 - not all memory accesses take same time (cache, main memory, disk)
 - not all arithmetic operations take same time (e.g. multiplications expensive)
 - instruction pipelining
 - other processes
- But RAM model often enough to give relatively realistic results (if we don’t cheat too much).
- Running time of insertion-sort depends on many things
• Normally we are interested in running time as a function of *input size*

 – in insertion-sort: n.

• **Best-case running time:** The shortest running time for any input of size n. The algorithm will never be faster than this.

• **Worst-case running time:** The longest running time for *any* input of size n. The algorithm will never be slower than this.

• **Average-case running time:** Be careful: average over what? Must assume an input distribution.

• Let us analyze insertion-sort by assuming that line i in the program use c RAM instructions.

 – How many times are each line of the program executed?

 – Let t_j be the number of times line 4 (the WHILE statement) is executed in the j’th iteration.

```
FOR $j = 2$ to $n$ DO
    $key = A[j]$
    $i = j - 1$
    WHILE $i > 0$ and $A[i] > key$ DO
        $A[i + 1] = A[i]$
        $i = i - 1$
    OD
    $A[i + 1] = key$
OD
```

• Running time: (depends on t_j) $T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} t_j + 2c \sum_{j=2}^{n} (t_j - 1) + c(n - 1)$

 – **Best case:** $t_j = 1$ (already sorted)
 $T(n) = cn + 2c(n - 1) + c(n - 1) + c(n - 1) = 5cn - 4c = k_1n - k_2$

 – **Linear function of** n

 – **Worst case:** $t_j = j$ (sorted in decreasing order)
 $T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} j + 2c \sum_{j=2}^{n} (j - 1) + c(n - 1)$
 $= cn + 2c(n - 1) + c\left(\frac{n(n+1)}{2} - 1\right) + 2c\left(\frac{(n-1)n}{2}\right) + c(n - 1)$
 $= \ldots$
 $= k_3n^2 + k_4n - k_5$
Quadratic function of \(n \)

Note: We used \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \) (Next week!)

- **Average case**: We assume \(n \) numbers chosen randomly \(\Rightarrow t_j = j/2 \)

\[
T(n) = k_6 n^2 + k_7 n + k_8
\]

Still **Quadratic function of \(n \)**

- Note:
 - We will normally be interested in worst-case running time.
 - * For some algorithms, worst-case occur fairly often.
 - * Average case often as bad as worst case (but not always!).
 - We will only consider order of growth of running time:
 - * We already ignored cost of each statement and used the constants \(c \).
 - * We even ignored \(c \) and used \(k_i \).
 - * We simply said that best case was *linear in \(n \)* and worst/average case *quadratic in \(n \).*

\(\Rightarrow O \)-notation (best case \(O(n) \), worst/average case \(O(n^2) \)) (next lecture!)