1 Quick-Sort Review

• The last two lectures we have considered Quick-Sort:
 – Divide $A[1...n]$ (using PARTITION) into subarrays $A' = A[1..q-1]$ and $A'' = A[q+1...n]$ such that all elements in A'' are larger than $A[q]$ and all elements in A' are smaller than $A[q]$.
 – Recursively sort A' and A''.

• We discussed how split point q produced by PARTITION only depends on last element in A.

• We discussed how randomization can be used to get good expected partition point.

• Analysis:
 – Best case ($q = n/2$): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 – Worst case ($q = 1$): $T(n) = T(1) + T(n - 1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 – Expected case for randomized algorithm: $\Theta(n \log n)$

2 Selection

• If we could find element e such that $\text{rank}(e) = n/2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 – We could just exchange e with last element in A in beginning of PARTITION and thus make sure that A is always partition in the middle.

• We will consider a more general problem than finding the i’th element:
 – Selection problem

\[\text{Select}(i) \text{ is the } i\text{'th element in the sorted order of elements}\]

• Note: We do not require that we sort to find Select(i).

• Note: Select(1) = minimum, Select(n) = maximum, Select($n/2$) = median.
• Special cases of Select(i)
 – Minimum or maximum can easily be found in \(n - 1 \) comparisons
 * Scan through elements maintaining minimum/maximum
 – Second largest/smallest element can be found in \((n - 1) + (n - 2) = 2n - 3 \) comparisons
 * Find and remove minimum/maximum
 * Find minimum/maximum
 – Median:
 * Using the above idea repeatedly we can find the median in time
 \[\sum_{i=1}^{n/2} (n - i) = \frac{n^2}{2} - \sum_{i=1}^{n/2} i = \frac{n^2}{2} - (n/2 \cdot (n/2 + 1))/2 = \Theta(n^2) \]
 * We can easily design \(\Theta(n \log n) \) algorithm using sorting

• Can we design \(O(n) \) time algorithm for general \(i \)?

• If we could partition nicely (which is what we are really trying to do) we could solve the problem
 – by partitioning and then recursively looking for the element in one of the partitions:

```plaintext
SELECT(A, p, r, i)

IF p = r THEN RETURN A[p]
q = PARTITION(A, p, r)

\[
\begin{array}{c}
\text{p} \\
\text{i} \\
\text{q} \\
\text{q+p+1}
\end{array}
\]

k = q - p + 1
IF i \leq k THEN
  RETURN SELECT(A, p, q, i)
ELSE
  RETURN SELECT(A, q + 1, r, i - k)
FI
```

Select \(i \)’th elements using SELECT(A, 1, n, i)

– If the partition was perfect \((q = n/2)\) we have

\[
T(n) = T(n/2) + n
= n + n/2 + n/4 + n/8 + \cdots + 1
= \sum_{i=0}^{\log n} \frac{n}{2^i}
= n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i
\leq n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i
= \Theta(n)
\]
Note:

* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in \(T(n) = T(n-1) + n = \Theta(n^2) \) time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction \((\alpha < 1)\) of the elements are eliminated we get running time \(T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n) \).

- It turns out that we can modify the algorithm and get \(T(n) = \Theta(n) \) in the worst case
 - The idea is to find a split element \(q \) such that we always eliminate a fraction of the elements:

    ```
    SELECT(i)
    * Divide \( n \) elements into groups of 5
    * Select median of each group (\( \Rightarrow \lceil \frac{n}{5} \rceil \) selected elements)
    * Use SELECT recursively to find median \( q \) of selected elements
    * Partition all elements based on \( q \)
      
      ```

 ![Diagram](image_of_diagram)

 * Use SELECT recursively to find \(i \)’th element
 - If \(i \leq k \) then use SELECT\((i)\) on \(k \) elements
 - If \(i > k \) then use SELECT\((i-k)\) on \(n-k \) elements

- If \(n’ \) is the maximal number of elements we recur on in the last step of the algorithm the running time is given by \(T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n’) \)

- Estimation of \(n’ \):
 - Consider the following figure of the groups of 5 elements
 * An arrow between element \(e_1 \) and \(e_2 \) indicates that \(e_1 > e_2 \)
 * The \(\lceil \frac{n}{5} \rceil \) selected elements are drawn solid (\(q \) is median of these)
 * Elements \(> q \) are indicated with box

Moreover, the algorithm can be modified to have a **worst-case** running time of \(\Theta(n) \). The idea is to find a split element \(q \) such that we always eliminate a fraction of the elements:

``` select(i) 
 * Divide \( n \) elements into groups of 5 
 * Select median of each group (\( \Rightarrow \lceil \frac{n}{5} \rceil \) selected elements) 
 * Use SELECT recursively to find median \( q \) of selected elements 
 * Partition all elements based on \( q \) 
```

- Use SELECT recursively to find \(i \)’th element
 - If \(i \leq k \) then use SELECT\((i)\) on \(k \) elements
 - If \(i > k \) then use SELECT\((i-k)\) on \(n-k \) elements

Moreover, if \(n’ \) is the maximal number of elements we recur on in the last step of the algorithm the running time is given by \(T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n’) \).

- Estimation of \(n’ \):
 - Consider the following figure of the groups of 5 elements
 * An arrow between element \(e_1 \) and \(e_2 \) indicates that \(e_1 > e_2 \)
 * The \(\lceil \frac{n}{5} \rceil \) selected elements are drawn solid (\(q \) is median of these)
 * Elements \(> q \) are indicated with box
Number of elements \(q \) is larger than \(3\left\lceil \frac{n}{5} \right\rceil - 2 \geq \frac{3n}{10} - 6 \)

* We get 3 elements from each of \(\frac{1}{2}\left\lceil \frac{n}{5} \right\rceil \) columns except possibly the one containing \(q \) and the last one.

- Similarly the number of elements \(q \) is larger than \(\frac{3n}{10} - 6 \)

We recurse on at most \(n' = n - \left(\frac{3n}{10} - 6 \right) = \frac{7}{10}n + 6 \) elements

- So \texttt{Selection}(i) runs in time \(T(n) = \Theta(n) + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6) \)

- Solution to \(T(n) = n + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6) \):
 - Guess \(T(n) \leq cn \)
 - Induction:

\[
T(n) = n + T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7}{10}n + 6) \\
\leq n + c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot (\frac{7}{10}n + 6) \\
\leq n + c \cdot \frac{n}{5} + c + \frac{7}{10}cn + 6c \\
= \frac{9}{10}cn + n + 7c \\
\leq \frac{7}{10}cn
\]

If \(7c + n \leq \frac{1}{10}cn \) which can be satisfied (e.g. true for \(c = 20 \) if \(n > 140 \))

- Note: It is important that we chose every 5’th element, not all other choices will work (homework).