Recurrences
(CLRS 4.1-4.2)

- Last time we discussed divide-and-conquer algorithms

<table>
<thead>
<tr>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Solve P:</td>
</tr>
<tr>
<td>1. Divide P into smaller problems $P_1, P_2, P_3, \ldots P_k$.</td>
</tr>
<tr>
<td>2. Conquer by solving the (smaller) subproblems recursively.</td>
</tr>
<tr>
<td>3. Combine solutions to $P_1, P_2, \ldots P_k$ into solution for P.</td>
</tr>
</tbody>
</table>

- Analysis of divide-and-conquer algorithms and in general of recursive algorithms leads to recurrences.

- Merge-sort lead to the recurrence $T(n) = 2T(n/2) + n$

 - or rather, $T(n) = \begin{cases} \Theta(1) & \text{If } n = 1 \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{If } n > 1 \end{cases}$

 - but we will often cheat and just solve the simple formula (equivalent to assuming that $n = 2^k$ for some constant k, and leaving out base case and constant in Θ).

Methods for solving recurrences

1. Substitution method

2. Iteration method
 - Recursion-tree method
 - (Master method)
1 Solving Recurrences with the Substitution Method

- Idea: Make a guess for the form of the solution and prove by induction.
- Can be used to prove both upper bounds $O()$ and lower bounds $\Omega()$.
- Let’s solve $T(n) = 2T(n/2) + n$ using substitution

 - Guess $T(n) \leq cn \log n$ for some constant c (that is, $T(n) = O(n \log n)$)
 - Proof:
 * Base case: we need to show that our guess holds for some base case (not necessarily $n = 1$, some small n is ok). Ok, since function constant for small constant n.
 * Assume holds for $n/2$: $T(n/2) \leq c\frac{n}{2} \log \frac{n}{2}$ (Question: Why not $n - 1$?)

 Prove that holds for n: $T(n) \leq cn \log n$

 \[
 T(n) = 2T(n/2) + n \\
 \leq 2\left(c\frac{n}{2} \log \frac{n}{2}\right) + n \\
 = cn \log \frac{n}{2} + n \\
 = cn \log n - cn \log 2 + n \\
 = cn \log n - cn + n
 \]

 So ok if $c \geq 1$

- Similarly it can be shown that $T(n) = \Omega(n \log n)$
 Exercise!

- Similarly it can be shown that $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$ is $\Theta(n \lg n)$.
 Exercise!

- The hard part of the substitution method is often to make a good guess. How do we make a good (i.e. tight) guess?? Unfortunately, there’s no “recipe” for this one. Try iteratively $O(n^3), \Omega(n^3), O(n^2), \Omega(n^2)$ and so on. Try solving by iteration to get a feeling of the growth.
2 Solving Recurrences with the Iteration/Recursion-tree Method

• In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.
• The iteration method does not require making a good guess like the substitution method (but it is often more involved than using induction).
• Example: Solve \(T(n) = 8T(n/2) + n^2 \) \((T(1) = 1) \)

\[
T(n) = n^2 + 8T(n/2) \\
= n^2 + 8(8T(n/4) + (n/2)^2) \\
= n^2 + 8^2T(n/4) + 8(n^2/4) \\
= n^2 + 2n^2 + 8^2T(n/4) \\
= n^2 + 2n^2 + 8^2(8T(n/8) + (n/2^2)^2) \\
= n^2 + 2n^2 + 8^3T(n/8) + 8^2(n^2/4^2)) \\
= n^2 + 2n^2 + 2^2n^2 + 8^3T(n/8) \\
= \ldots \\
= n^2 + 2n^2 + 2^2n^2 + 2^3n^2 + 2^4n^2 + \ldots
\]

– Recursion depth: How long (how many iterations) it takes until the subproblem has constant size? \(i \) times where \(n/2^i = 1 \Rightarrow i = \log n \)
– What is the last term? \(8^iT(1) = 8^{\log n} \)

\[
T(n) = n^2 + 2n^2 + 2^2n^2 + 2^3n^2 + 2^4n^2 + \ldots + 2^{\log n-1}n^2 + 8^{\log n} \\
= \sum_{k=0}^{\log n-1} 2^k n^2 + 8^{\log n} \\
= n^2 \sum_{k=0}^{\log n-1} 2^k + (2^3)^{\log n}
\]

• Now \(\sum_{k=0}^{\log n-1} 2^k \) is a geometric sum so we have \(\sum_{k=0}^{\log n-1} 2^k = \Theta(2^{\log n-1}) = \Theta(n) \)
• \((2^3)^{\log n} = (2^{\log n})^3 = n^3 \)

\[
T(n) = n^2 \cdot \Theta(n) + n^3 \\
= \Theta(n^3)
\]
2.1 Recursion tree

A different way to look at the iteration method: is the recursion-tree, discussed in the book (4.2).

- we draw out the recursion tree with cost of single call in each node—running time is sum of costs in all nodes
- if you are careful drawing the recursion tree and summing up the costs, the recursion tree is a direct proof for the solution of the recurrence, just like iteration and substitution
- Example: \(T(n) = 8T(n/2) + n^2 \) \(T(1) = 1 \)
3 Matrix Multiplication

- Let X and Y be $n \times n$ matrices

\[
X = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & x_{1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nn}
\end{bmatrix}
\]

- We want to compute $Z = X \cdot Y$

\[
 z_{ij} = \sum_{k=1}^{n} X_{ik} \cdot Y_{kj}
\]

- Naive method uses $\Theta(n^3)$ operations

- Divide-and-conquer solution:

\[
Z = \begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix} \cdot \begin{bmatrix}
 E & F \\
 G & H
\end{bmatrix} = \begin{bmatrix}
 (A \cdot E + B \cdot G) & (A \cdot F + B \cdot H) \\
 (C \cdot E + D \cdot G) & (C \cdot F + D \cdot H)
\end{bmatrix}
\]

- The above naturally leads to divide-and-conquer solution:

 * Divide X and Y into 8 sub-matrices A, B, C, and D.
 * Do 8 matrix multiplications recursively.
 * Compute Z by combining results (doing 4 matrix additions).

- Let’s assume $n = 2^c$ for some constant c and let A, B, C and D be $n/2 \times n/2$ matrices

 * Running time of algorithm is $T(n) = 8T(n/2) + \Theta(n^2)$

- But we already discussed a (simpler/naive) $O(n^3)$ algorithm! Can we do better?

3.1 Strassen’s Algorithm

- Strassen observed the following:

\[
Z = \begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix} \cdot \begin{bmatrix}
 E & F \\
 G & H
\end{bmatrix} = \begin{bmatrix}
 (S_1 + S_2 - S_4 + S_6) & (S_4 + S_5) \\
 (S_6 + S_7) & (S_2 + S_3 + S_5 - S_7)
\end{bmatrix}
\]

where

\[
S_1 = (B - D) \cdot (G + H) \\
S_2 = (A + D) \cdot (E + H) \\
S_3 = (A - C) \cdot (E + F) \\
S_4 = (A + B) \cdot H \\
S_5 = A \cdot (F - H) \\
S_6 = D \cdot (G - E) \\
S_7 = (C + D) \cdot E
\]
– Let’s test that $S_6 + S_7$ is really $C \cdot E + D \cdot G$

\[
S_6 + S_7 = D \cdot (G - E) + (C + D) \cdot E
\]

\[
= DG - DE + CE + DE
\]

\[
= DG + CE
\]

– This leads to a divide-and-conquer algorithm with running time $T(n) = 7T(n/2) + \Theta(n^2)$

 – We only need to perform 7 multiplications recursively.

 – Division/Combination can still be performed in $\Theta(n^2)$ time.

– Let’s solve the recurrence using the iteration method

\[
T(n) = 7T(n/2) + n^2
\]

\[
= n^2 + 7\left(7T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2\right)
\]

\[
= n^2 + \left(\frac{7}{2}\right)n^2 + 7^2T\left(\frac{n}{2}\right)
\]

\[
= n^2 + \left(\frac{7}{2}\right)n^2 + 7^2\left(7T\left(\frac{n}{2^3}\right) + \left(\frac{n}{2^3}\right)^2\right)
\]

\[
= n^2 + \left(\frac{7}{2}\right)n^2 + \left(\frac{7}{2^2}\right)^2 \cdot n^2 + 7^3T\left(\frac{n}{2^3}\right)
\]

\[
= n^2 + \left(\frac{7}{2^2}\right)n^2 + \left(\frac{7}{2^2}\right)^2 \cdot n^2 + \left(\frac{7}{2^2}\right)^3 n^2 \ldots + \left(\frac{7}{2^2}\right)^\log n - 1 n^2 + 7^\log n
\]

\[
= \sum_{i=0}^{\log n - 1} \left(\frac{7}{2^2}\right)^i n^2 + 7^\log n
\]

\[
= n^2 \cdot \Theta\left(\left(\frac{7}{2^2}\right)^{\log n - 1}\right) + 7^\log n
\]

\[
= n^2 \cdot \Theta\left(\frac{7^{\log n}}{(2^2)^{\log n}}\right) + 7^\log n
\]

\[
= n^2 \cdot \Theta\left(\frac{7^{\log n}}{n^2}\right) + 7^\log n
\]

\[
= \Theta\left(7^{\log n}\right)
\]

– Now we have the following:

\[
7^{\log n} = 7^{\log_7 n}
\]

\[
= \left(7^{\log_7 n}\right)^{1/\log_7 2}
\]

\[
= n^{1/\log_7 2}
\]

\[
= n^{\log_7 2}
\]

\[
= n^{\log_7 2}
\]

– Or in general: $a^{\log_k n} = n^{\log_k a}$
So the solution is $T(n) = \Theta(n^{\log 7}) = \Theta(n^{2.81...})$

- Note:
 - We are 'hiding' a much bigger constant in $\Theta()$ than before.
 - Currently best known bound is $O(n^{2.376...})$ (another method).
 - Lower bound is (trivially) $\Omega(n^2)$.

4 Master Method

- We have solved several recurrences using substitution and iteration.
- We solved several recurrences of the form $T(n) = aT(n/b) + n^c$ ($T(1) = 1$).
 - Strassen’s algorithm $\Rightarrow T(n) = 7T(n/2) + n^2$ ($a = 7, b = 2, \text{ and } c = 2$)
 - Merge-sort $\Rightarrow T(n) = 2T(n/2) + n$ ($a = 2, b = 2, \text{ and } c = 1$).
- It would be nice to have a general solution to the recurrence $T(n) = aT(n/b) + n^c$.

We do!

\[
\begin{align*}
T(n) &= aT\left(\frac{n}{b}\right) + n^c \quad a \geq 1, b \geq 1, c > 0 \\
\Downarrow
\quad T(n) &= \begin{cases}
\Theta(n^{\log_b a}) & a > b^c \\
\Theta(n^c \log_b n) & a = b^c \\
\Theta(n^c) & a < b^c
\end{cases}
\end{align*}
\]

Proof (Iteration method)

\[
\begin{align*}
T(n) &= aT\left(\frac{n}{b}\right) + n^c \\
 &= n^c + a\left(\left(\frac{n}{b}\right)^c + aT\left(\frac{n}{b^2}\right)\right) \\
 &= n^c + \left(\frac{a}{b^c}\right)n^c + a^2T\left(\frac{n}{b^3}\right) \\
 &= n^c + \left(\frac{a}{b^c}\right)n^c + a^2\left(\left(\frac{n}{b^3}\right)^c + aT\left(\frac{n}{b^5}\right)\right) \\
 &= n^c + \left(\frac{a}{b^c}\right)n^c + \left(\frac{a}{b^c}\right)^2n^c + a^3T\left(\frac{n}{b^7}\right) \\
 &= \ldots \\
 &= n^c + \left(\frac{a}{b^c}\right)n^c + \left(\frac{a}{b^c}\right)^2n^c + \left(\frac{a}{b^c}\right)^3n^c + \ldots + \left(\frac{a}{b^c}\right)^{\log_b n}n^c + a^{\log_b n}T(1) \\
 &= n^c \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + a^{\log_b n}n^c + a^{\log_b n}T(1) \\
 &= n^c \sum_{k=0}^{\log_b n-1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a}
\end{align*}
\]

Recall geometric sum $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} = \Theta(x^n)$
• \(a < b^c \)

\[
a < b^c \Leftrightarrow \frac{a}{b^c} < 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c} \right)^k \leq \sum_{k=0}^{+\infty} \left(\frac{a}{b^c} \right)^k = \frac{1}{1 - \left(\frac{a}{b^c} \right)} = \Theta(1)
\]

\[
a < b^c \Leftrightarrow \log_b a < \log_b b^c = c
\]

\[
T(n) = n^c \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c} \right)^k \cdot \Theta(1) + n^{\log_b a}
\]

\[
= \Theta(n^c)
\]

• \(a = b^c \)

\[
a = b^c \Leftrightarrow \frac{a}{b^c} = 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c} \right)^k = \sum_{k=0}^{\log_b n - 1} 1 = \Theta(\log_b n)
\]

\[
a = b^c \Leftrightarrow \log_b a = \log_b b^c = c
\]

\[
T(n) = \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c} \right)^k \cdot \Theta(1) + n^{\log_b a}
\]

\[
= n^c \cdot \Theta(\log_b n) + n^{\log_b a}
\]

\[
= \Theta(n^c \log_b n)
\]

• \(a > b^c \)

\[
a > b^c \Leftrightarrow \frac{a}{b^c} > 1 \Rightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c} \right)^k = \Theta \left(\left(\frac{a}{b^c} \right)^{\log_b n} \right) = \Theta \left(\frac{a^{\log_b n}}{\left(\frac{a}{b^c} \right)^{\log_b n}} \right) = \Theta \left(\frac{a^{\log_b n}}{n^c} \right)
\]

\[
T(n) = n^c \cdot \Theta \left(\frac{a^{\log_b n}}{n^c} \right) + n^{\log_b a}
\]

\[
= \Theta(n^{\log_b a}) + n^{\log_b a}
\]

\[
= \Theta(n^{\log_b a})
\]

• Note: Book states and proves the result slightly differently (don’t read it).

5 Changing variables

Sometimes reccurrences can be reduced to simpler ones by changing variables

• Example: Solve \(T(n) = 2T(\sqrt{n}) + \log n \)

Let \(m = \log n \Rightarrow 2^m = n \Rightarrow \sqrt{n} = 2^{m/2} \)

\[
T(n) = 2T(\sqrt{n}) + \log n \Rightarrow T(2^m) = 2T(2^{m/2}) + m
\]

Let \(S(m) = T(2^m) \)

\[
T(2^m) = 2T(2^{m/2}) + m \Rightarrow S(m) = 2S(m/2) + m \Rightarrow S(m) = O(m \log m) \Rightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)\]
6 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: $\Theta(\log n)$
 - Recurrence: $T(n) = 1 + T(n/2)$
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: $T(n) = 1 + T(99n/100)$

- Linear: $\Theta(N)$
 - Recurrence: $T(n) = 1 + T(n - 1)$
 - Typical example: Single loop
 - Variations: $T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n$

- Quadratic: $\Theta(n^2)$
 - Recurrence: $T(n) = n + T(n - 1)$
 - Typical example: Nested loops

- Exponential: $\Theta(2^n)$
 - Recurrence: $T(n) = 2T(n - 1)$