Minimum Spanning Trees
(CLRS 23)

- Problem: Given connected, undirected graph $G = (V, E)$ where each edge (u, v) has weight $w(u, v)$. Find acyclic set $T \subseteq E$ connecting all vertices in V with minimal weight $w(T) = \sum_{(u,v) \in T} w(u,v)$.

- An acyclic set connecting all vertices is called a spanning tree. We want to find a spanning tree of minimal weight. We use minimum spanning tree as short for minimum weight spanning tree).

- MST problem has many applications
 - For example, think about connecting cities with minimal amount of wire or roads (cities are vertices, weight of edges are distances between city pairs).

- Example:

- Weight of MST is $4 + 8 + 7 + 9 + 2 + 4 + 1 + 2 = 37$
- MST is not unique: e.g. (b, c) can be exchanged with (a, h)

1 PRIM’s algorithm

- Greedy algorithm for computing MST:
 - Start with spanning tree containing arbitrary vertex r and no edges
 - Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree

- Implementation:
 - To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of v to v in the priority queue).
 - For each node u maintain $visit(u)$ ($(u, visit(u))$ is the currently best edge connecting it to the tree.)
PRIM(r)

For each $v \in V$ DO

\text{Insert}(PQ, v, \infty)
\text{Decrease-Key}(PQ, r, 0)

\text{WHILE} PQ \text{ not empty DO}

\quad u = \text{DeleteMin}(PQ)

\quad \text{(output edge } (u, \text{visit}(u)) \text{ as part of MST)}

\quad \text{For each } (u, v) \in E \text{ DO}

\quad \quad \text{IF } v \in PQ \text{ and } w(u, v) < \text{key}(v) \text{ THEN}

\quad \quad \quad \text{visit}[v] = u

\quad \quad \quad \text{Decrease-Key}(PQ, v, w(u, v))

• On the example graph, the greedy algorithm would work as follows (starting at vertex a):

\begin{enumerate}
\item \begin{enumerate}
\item[1.a)]
\item[1.b)]
\item[1.c)]
\item[1.d)]
\item[1.e)]
\item[1.f)]
\item[1.g)]
\item[1.h)]
\end{enumerate}
\end{enumerate}
• Analysis:
 – While loop runs $|V|$ times \Rightarrow we perform $|V|$ DELETEMIN’s
 – We perform at most one DECREASE-KEY for each of the $|E|$ edges
 \downarrow
 $O((|V| + |E|)\log |V|) = O(|E|\log |V|)$ running time.

• Correctness:
 – When designing a greedy algorithm the hard part is to prove that it works correctly.
 – We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms:

Some definitions
 ∗ A cut $(S, V \setminus S)$ is a partition of V into sets S and $V \setminus S$
 ∗ A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \setminus S$ or $v \in S$ and $u \in V \setminus S$
 ∗ A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut

Example: Cut S respects T

![Diagram](https://example.com/diagram.png)

• Theorem: If $G = (V, E)$ is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge $e = (u, v)$ crossing S.

• Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut consist of current spanning tree.

• Proof:
 – Let T^* be MST containing T
 – If $e \in T^*$ we are done
 – If $e \notin T^*$:
 * There must be (at least) one other edge $(x, y) \in T^*$ crossing the cut S such that there is a unique path from u to v in T^* (T^* is spanning tree)
* This path together with e forms a cycle
* If we remove edge (x, y) from T^* and add e instead, we still have spanning tree
* New spanning tree must have same weight as T^* since $w(u, v) \leq w(x, y)$
 \[\downarrow \]
 There is a MST containing T and e.

- The Theorem allows us to describe a very abstract greedy algorithm for MST:

```latex
T = \emptyset
While |T| \leq |V| - 1 DO
    Find cut $S$ respecting $T$
    Find minimal edge $e$ crossing $S$
    $T = T \cup \{e\}$
```

- Prim’s algorithm follows this abstract algorithm.
- Kruskal’s algorithm is another implementation of the abstract algorithm.
2 Kruskal’s Algorithm

- Kruskal’s algorithm is another implementation of the abstract algorithm.
- Idea in Kruskal’s algorithm:
 - Start with $|V|$ trees (one for each vertex)
 - Consider edges E in increasing order; add edge if it connects two trees
- Example:

![Diagram of Kruskal's algorithm steps](image)

- Implementation:

We need (Union-Find) data structure that supports:
 - MAKE-SET(v): Create set consisting of v
 - UNION-SET(u, v): Unite set containing u and set containing v
 - FIND-SET(u): Return unique representative for set containing u
KRUSKAL

\[T = \emptyset \]

FOR each vertex \(v \in V \) MAKE-SET\((v)\)

Sort edges of \(E \) in increasing order by weight

FOR each edge \(e = (u, v) \in E \) in order DO

\[\text{IF } \text{FIND-SET}(u) \neq \text{FIND-SET}(v) \text{ THEN} \]

\[T = T \cup \{e\} \]

\[\text{UNION-SET}(u, v) \]

• Analysis:

 – We use \(O(|E| \log |E|) \) time to sort edges and we perform \(|V|\) MAKE-SET, \(|V| - 1\) UNION-SET, and \(2|E|\) FIND-SET operations.

 – We will discuss a simple solution to the Union-Find problem such that MAKE-SET and FIND-SET take \(O(1) \) time and UNION-SET takes \(O(\log V) \) time amortized.

 \[\Downarrow \]

 Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|) \) like Prim’s algorithm.

• Correctness

 – follows from Theorem above: If minimal edge connects two trees then there exists a cut respecting the current set of edges (cut consisting of vertices in one of the trees)
3 Union-Find

- The *Union-Find problem*: Maintain a set system under:
 - **MAKE-SET**(v): Create set consisting of v
 - **UNION-SET**(u, v): Unite set containing u and set containing v
 - **FIND-SET**(u): Return unique representative for set containing u

- Simple solution:
 - Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:

Sets

```
1  2  10
3  
6
```

```
5  4  12
8
```

```
9  11
7
```

Representation

```
3  2  1  10  6
```

```
8  5  4  12
```

```
11  9  7
```

- **MAKE-SET**(v): Make a list with one element ⇒ O(1) time
- **FIND-SET**(u): Follow pointer and return unique representative ⇒ O(1) time
- **UNION-SET**(u, v): Link first element in list with unique representative **FIND-SET**(u) after last element in list with unique representative **FIND-SET**(v) ⇒ O(|V|) time (as we have to update all unique representative pointers in list containing u)

- With this simple solution the |V| − 1 UNION-SET operations in Kruskal’s algorithm may take O(|V|^2) time.

- We can improve the performance of UNION-SET with a very simple modification: Always link the smaller list after the longer list (⇒ update the pointers of the smaller list)

 - One UNION-SET operation can still take O(|V|) time, but the |V| − 1 UNION-SET operations takes O(|V| log |V|) time altogether (one UNION-SET takes O(log |V|) time *amortized*):
 * Total time is proportional to number of unique representative pointer changes
 * Consider element u:
 After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before
 \[\Rightarrow \]
 After k pointer changes, u is in list of size at least \(2^k\)
 \[\Rightarrow \]
 Pointer can be changed at most log |V| times.

- With improvement, Kruskal’s algorithm runs in time \(O(|E| \log |E| + |V| \log |V|) = O(|E| + |V| \log |E|) = O(|E| \log |V|)\) like Prim’s algorithm.