Heaps. Heapsort.
(CLRS 6)

1 Introduction

• We have discussed several fundamental algorithms (e.g. sorting)
• We will now turn to data structures; Play an important role in algorithms design.
 – Today we discuss priority queues and next time structures for maintaining ordered sets.

2 Priority Queue

• A priority queue supports the following operations on a set S of n elements:
 – INSERT: Insert a new element e in S
 – FINDMIN: Return the minimal element in S
 – DELETEMIN: Delete the minimal element in S

• Sometimes we are also interested in supporting the following operations:
 – CHANGE: Change the key (priority) of an element in S
 – DELETE: Delete an element from S

• We can obviously sort using a priority queue:
 – Insert all elements using INSERT
 – Delete all elements in order using FINDMIN and DELETEMIN

• Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

2.1 Array or List implementations

• The first implementation that comes to mind is ordered array:

```
1 3 5 6 7 8 9 11 12 15 17
```

 – FINDMIN can be performed in $O(1)$ time
 – DELETEMIN and INSERT takes $O(n)$ time since we need to expand/compress the array after inserting or deleting element.

• If the array is unordered all operations take $O(n)$ time.
• We could use double linked sorted list instead of array to avoid the $O(n)$ expansion/compression cost
 – but INSERT can still take $O(n)$ time.
2.2 Heap implementation

- One way of implementing a priority queue is using a heap

- Heap definition:
 - Perfectly balanced binary tree
 - lowest level can be incomplete (but filled from left-to-right)
 - For all nodes \(v \) we have \(\text{key}(v) \geq \text{key}(\text{parent}(v)) \)

- Example:

- Heap can be implemented (stored) in two ways (at least)
 - Using pointers
 - In an array level-by-level, left-to-right

 Example:

- Properties of heap:
 - Height \(\Theta(\log n) \)
 - Minimum of \(S \) is stored in root

- Operations:
 - INSERT
 - Insert element in new leaf in leftmost possible position on lowest level
 - Repeatedly swap element with element in parent node until heap order is reestablished (UP-HEAPIFY)
Example: Insertion of 4

- **FindMin**
 * Return root element

- **DeleteMin**
 * Delete element in root
 * Move element from rightmost leaf on lowest level to the root (and delete leaf)
 * Repeatedly swap element with the smaller of the children elements until heap order is reestablished (DOWN-HEAPIFY)

Example:

- **Change** and **Delete** can be handled similarly in $O(\log n)$ time
 * Note: Assuming that we know the element to be changed/deleted (we cannot search in a heap!!)

- **Correctness**: Exercise.

- **Running time**: All operations traverse at most one root-leaf path $\Rightarrow O(\log n)$ time.

- Sorting using heap (HeapSort) takes $\Theta(n \log n)$ time.
 - $n \cdot O(\log n)$ time to insert all elements (build the heap)
 - $n \cdot O(\log n)$ time to output sorted elements

- Sometimes we would like to build a heap faster than $O(n \log n)$

- **BUILDHEAP**
 * Insert elements in any order in perfectly balanced tree
 * DOWN-HEAPIFY all nodes level-by-level, bottom-up

- Correctness:
 * Induction on height of tree: When doing level i, all trees rooted at level $i - 1$ are heaps.

- Analysis:
 * The leaves are at height 0, the root is at height $\log n$
 * n elements $\Rightarrow \leq \left\lceil \frac{n}{2} \right\rceil$ leaves $\Rightarrow \left\lceil \frac{n}{2^h} \right\rceil$ elements at height h
 * Cost of DOWN-HEAPIFY on a node at height h is h
 * Total cost: $\sum_{i=1}^{\log n} h \cdot \left\lceil \frac{n}{2^i} \right\rceil = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^i}$
* It can be shown that \(\sum_{i=1}^{\log n} \frac{h}{2^i} = O(1) \implies \) the total buildheap cost is \(\Theta(n) \)

* Computing \(\sum_{i=1}^{n} \frac{h}{2^i} \) and \(\sum_{i=1}^{\infty} \frac{h}{2^i} \)
 . Differentiate \(\sum_{h=0}^{n} x^h = \frac{1-x^{n+1}}{1-x} \), respectively \(\sum_{h=0}^{\infty} x^h = \frac{1}{1-x} \) (assuming \(|x| < 1\))
 . \(\sum_{h=0}^{\infty} h x^{h-1} = \frac{1}{(x-1)^2} \) \(\Rightarrow \sum_{h=0}^{n} h x^h = \frac{x}{(x-1)^2} \) \(\Rightarrow \sum_{h=0}^{n} \frac{h}{2^i} = \frac{1/2}{(1/2-1)^2} = O(1) \)