1 Maintaining ordered set

• Last time we started discussing the problem of maintaining an ordered set S under operations
 - Search
 - Insert
 - Delete
 - Successor
 - Predecessor

• We discussed several implementations
 - Array
 - Linked list
 - Skip lists

• We saw that in skip list all operations have expected running time $O(\log n)$
 - Next time we will discuss a data structure (red-black tree) with worst-case $O(\log n)$ running time.

• We can argue that $\Theta(\log n)$ time is optimal for searching in the decision tree model
 Recall decision tree model:

 - Binary tree where each node is labeled $a_i \leq a_j$
 - Execution corresponds to root-leaf path
 - Leaf contains result of computation

 - Decision trees correspond to algorithms where we are only allowed to use comparison to gain knowledge about input.
 - Decision tree for SEARCH must have n leaves (one for each element)
 - Tree must have height $\Omega(\log n)$

• In the case of sorting, we saw that we could beat the $\Omega(n \log n)$ decision tree lower bound using Indirect Addressing (Radix sort)
 - we can also use indirect addressing idea on ordered set problem.
2 Direct Addressing

- Store element \(e \) in cell \(e \) of array (we assume elements are integers)

\[
\begin{array}{cccc}
0 & e & |U| - 1
\end{array}
\]

- **INSERT/DELETE/SEARCH** in \(O(1) \) time
- **PREDECESSOR/SUCCESSOR** in \(O(|U|) \) time (\(|U| \) is the size of "universe" \(U \))

- **Note:** We could make **PREDECESSOR/SUCCESSOR** efficient by linking neighbor elements, but then **Insert/Delete** becomes \(O(|U|) \)
- **Problem** is that \(|U|\) can be huge and often \(|U| \gg n\)
 - 32 bit integers \(\Rightarrow |U| = 2^{32} \)
- **We can reduce space use using "hashing"**

3 Hashing

- To introduce hashing, we look at direct addressing in a slightly different way:

 \[
 \begin{array}{cccc}
 0 & |U| - 1
 \end{array}
 \]

- The main idea is to fix the table size to \(m = O(n) \))
 - now element \(e \) cannot be stored in cell \(e \)
 \[
 \downarrow
 \]

 We introduce **hash function** \(h(e) : U \to \{0, 1, \ldots, m - 1\} \)

We call the array the **hash table**
• Problem is of course that several elements can be stored in same cell \((m < |U|)\)

 – We call such an event a collision

• We solve this problem using chaining

 – Elements mapping to same cell are stored in linked list

![Diagram of chaining](image)

• worst-case: INSERT in \(O(1)\), DELETE/SEARCH in \(O(\text{max chain length})\)

• PREDECESSOR/SUCCESSOR in \(O(m + n)\) since we have to look in all cells and chains
 (Note : We assume we can compute \(h(e)\) in \(O(1)\) time)

• Note: PREDECESSOR/SUCCESSOR bounds are very bad (we will not discuss them further in the following)

 – We call a data structure only supporting INSERT/DELETE/SEARCH a Dictionary
 – In a dictionary, order does not really matter
 – Lots of applications of dictionaries, e.g.
 * Symbol table in compilers
 * IP addresses to machine-name table

• Performance of hashing depends on how well \(h(e)\) spreads the elements in the hash table

 – Lets make the simple uniform hashing assumption

 Any given element is equally likely to hash into any of the \(m\) cells

 \[\Downarrow\]

 – On average \(\frac{n}{m}\) elements in each chain and searching takes \(O(\frac{n}{m})\) on the average

 \[\Downarrow\]

 – If we choose \(m = O(n)\) we get \(O(1)\) bounds (and \(O(n)\) space instead of \(O(|U|)\))

• How do we choose a good hashing function?

 – Often \(h(e) = e \mod m\) is used (\(e \mod m\) is remainder of \(e\) divided by \(m\))

 Example : \(m = 12, e = 100 \Rightarrow h(e) = 4\) since \(100 = 8 \cdot 12 + 4\)

 – \(m\) is often chosen to be a prime number far away from a power of 2

 If \(m = 2^p\) then \(h(e) = \text{lowest } p \text{ bits in } e\) which means that the hashing value only
 depends on some of the bits in \(e\). If data is not random—not all \(p\)-bit patterns equally
 likely—then this might be a very bad choice, we would rather have \(h(e)\) depend on all
 the bits
4 Universal Hashing

- Given hash function h, we can always find sets of elements that make hashing perform badly (n elements that map to same location)

- Like in Quick-sort and skip lists we can make sure our data structure does not perform badly on a particular input (set of inputs) using randomization
 - We choose a hash function randomly (independent of elements) from a carefully defined set of functions
 - no worst case inputs
 - good average case behavior

- We want the set of hash functions to be universal

Let H be a finite collection of functions $U \rightarrow 0, 1, ..., m - 1$. H is called universal if and only if for each $x, y \in U$ the number of functions $h \in H$ for which $h(x) = h(y)$ is precisely $|H|/m$.

- If we choose h randomly from H then the probability of collision between x and y is $|H|/m = 1/m$
- If $m > n$, then then expected number of collisions involving element e is < 1
 INSERT/DELETE/SEARCH in $O(1)$ expected
- Note: The book proves the above more formally and talks about how to find universal class of hash functions (not hard but requires some number theory, so we skip it)

5 Dynamic perfect hashing

- It turns out that one can even do searches in $O(1)$ worst-case time. Out of scope of this class.

- Idea: If set of n keys is static, we could potentially find a perfect hash function h

- We need to be able to store description of h compactly and compute h fast.

- Lots of research has been done on finding perfect hash functions for a given set of elements, resulting in $O(1)$ worst-case SEARCH

- The perfect hashing idea can even be made dynamic such that one also gets $O(1)$ INSERT/DELETE expected running time. Lots of recent results even improve on this.