Dynamic Programming
(CLRS 15.2-15.3)

Today we discuss a technique called "Dynamic programming". It is neither especially 'dynamic' nor especially 'programming' related. We will discuss dynamic programming by looking at an example.

1 Matrix-chain multiplication

- Problem: Given a sequence of matrices $A_1, A_2, A_3, \ldots, A_n$, find the best way (using the minimal number of multiplications) to compute their product.
 - Isn’t there only one way? $\left(\cdots \left((A_1 \cdot A_2) \cdot A_3 \right) \cdots \right) \cdot A_n$
 - No, matrix multiplication is associative.
 e.g. $A_1 \cdot (A_2 \cdot (A_3 \cdot \cdots (A_{n-1} \cdot A_n) \cdots))$ yields the same matrix.
 - Different multiplication orders do not cost the same:
 - Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes $p \cdot q \cdot r$ multiplications; result is a $p \times r$ matrix.
 - Consider multiplying 10×100 matrix A_1 with 100×5 matrix A_2 and 5×50 matrix A_3.
 - $(A_1 \cdot A_2) \cdot A_3$ takes $10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7500$ multiplications.
 - $A_1 \cdot (A_2 \cdot A_3)$ takes $100 \cdot 5 \cdot 50 + 10 \cdot 50 \cdot 100 = 75000$ multiplications.

- In general, let A_i be $p_{i-1} \times p_i$ matrix.
 - $A_1, A_2, A_3, \ldots, A_n$ can be represented by $p_0, p_1, p_2, p_3, \ldots, p_n$

- Let $m(i, j)$ denote minimal number of multiplications needed to compute $A_i \cdot A_{i+1} \cdots A_j$
 - We want to compute $m(1, n)$.

- Divide-and-conquer solution/recursive algorithm:
 - Divide into $j - i - 1$ subproblems by trying to set parenthesis in all $j - i - 1$ positions. (e.g. $(A_i \cdot A_{i+1} \cdots A_k) \cdot (A_{k+1} \cdots A_j)$ corresponds to multiplying $p_{i-1} \times p_k$ and $p_k \times p_j$ matrices.)
 - Recursively find best way of solving sub-problems. (e.g. best way of computing $A_i \cdot A_{i+1} \cdots A_k$ and $A_{k+1} \cdot A_{k+2} \cdots A_j$)
 - Pick best solution.

- Algorithm expressed in terms of $m(i, j)$:

 $$m(i, j) = \begin{cases} 0 & \text{If } i = j \\ \min_{i \leq k < j} \{ m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \} & \text{If } i < j \end{cases}$$
• Program:

```plaintext
MATRIX-CHAIN(i, j)
    IF i = j THEN return 0
    m(i, j) = \infty
    FOR k = i TO j - 1 DO
        q = MATRIX-CHAIN(i, k) + MATRIX-CHAIN(k + 1, j) + p_{k-1} \cdot p_k \cdot p_j
        IF q < m(i, j) THEN m(i, j) = q
    OD
    Return m(i, j)
END MATRIX-CHAIN

Return MATRIX-CHAIN(1, n)
```

• Running time:

\[
T(n) = \sum_{k=1}^{n-1} (T(k) + T(n - k) + O(1))
\]

\[
= 2 \cdot \sum_{k=1}^{n-1} T(k) + O(n)
\]

\[
\geq 2 \cdot T(n - 1)
\]

\[
\geq 2 \cdot 2 \cdot T(n - 2)
\]

\[
\geq 2 \cdot 2 \cdot 2 \ldots
\]

\[
= 2^n
\]

• Problem is that we compute the same result over and over again.

 – Example: Recursion tree for MATRIX-CHAIN(1,4)

 [Recursion tree diagram]

 We for example compute MATRIX-CHAIN(3,4) twice

• Solution is to ”remember” values we have already computed in a table—memoization
Matrix-chain\((i, j)\)
\[
\begin{align*}
\text{IF } i & = j \text{ THEN return 0} \\
\text{IF } m(i, j) & < \infty \text{ THEN return } m(i, j) \quad \text{/* This line has changed */} \\
\text{FOR } k = i \text{ to } j - 1 \text{ DO} \\
& q = \text{Matrix-chain}(i, k) + \text{Matrix-chain}(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \\
\text{IF } q & < m(i, j) \text{ THEN } m(i, j) = q \\
\text{OD} \\
\text{return } m(i, j) \\
\end{align*}
\]

END Matrix-chain

FOR \(i = 1\) to \(n\) DO
\[
\begin{align*}
\text{FOR } j & = i \text{ to } n \text{ DO} \\
& m(i, j) = \infty \\
\text{OD} \\
\end{align*}
\]

OD

return Matrix-chain\((1, n)\)

- Running time:
 - \(\Theta(n^2)\) different calls to \(\text{matrix-chain}(i, j)\).
 - The first time a call is made it takes \(O(n)\) time, \textit{not} counting recursive calls.
 - When a call has been made once it costs \(O(1)\) time to make it again.

\[
\Downarrow
\]

\(O(n^3)\) time

- Another way of thinking about it: \(\Theta(n^2)\) total entries to fill, it takes \(O(n)\) to fill one.

2 Alternative view of Dynamic Programming

- Often (including in the book) dynamic programming is presented in a different way; As filling up a table from the bottom.

- Matrix-chain example: Key is that \(m(i, j)\) only depends on \(m(i, k)\) and \(m(k + 1, j)\) where \(i \leq k < j \Rightarrow\) if we have computed them, we can compute \(m(i, j)\)
 - We can easily compute \(m(i, i)\) for all \(1 \leq i \leq n\) \((m(i, i) = 0)\)
 - Then we can easily compute \(m(i, i + 1)\) for all \(1 \leq i \leq n - 1\)
 \[
 m(i, i + 1) = m(i, i) + m(i + 1, i + 1) + p_{i-1} \cdot p_i \cdot p_{i+1}
 \]
 - Then we can compute \(m(i, i + 2)\) for all \(1 \leq i \leq n - 2\)
 \[
 m(i, i + 2) = \min \{ m(i, i) + m(i + 1, i + 2) + p_{i-1} \cdot p_i \cdot p_{i+2}, m(i, i + 1) + m(i + 2, i + 2) + p_{i-1} \cdot p_{i+1} \cdot p_{i+2} \}
 \]

 - Until we compute \(m(1, n)\)
 - Computation order:
• Program:

\[
\text{FOR } i = 1 \text{ to } n \text{ DO} \\
\quad m(i, i) = 0 \\
\text{OD} \\
\text{FOR } l = 1 \text{ to } n - 1 \text{ DO} \\
\quad \text{FOR } i = 1 \text{ to } n - l \text{ DO} \\
\quad \quad j = i + l \\
\quad \quad m(i, j) = \infty \\
\quad \quad \text{FOR } k = 1 \text{ to } j - 1 \text{ DO} \\
\quad \quad \quad q = m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \\
\quad \quad \quad \text{IF } q < m(i, j) \text{ THEN } m(i, j) = q \\
\quad \quad \text{OD} \\
\quad \text{OD} \\
\text{OD}
\]

• Analysis:

- \(O(n^2)\) entries, \(O(n)\) time to compute each \(\Rightarrow O(n^3)\).

• Note:

- I like recursive (divide-and-conquer) thinking.
- Book seems to like table method better.