Binary Search Trees and Skip Lists.
(CLRS 10, 12.1-12.3)

1 Maintaining ordered set dynamically

- We want to maintain an ordered set S under operations
 - SEARCH(e): Return (pointer to) element e in S (if $e \in S$
 - INSERT(e): Insert element e in S
 - DELETE(e): Delete element e from S
 - SUCCESSOR(e): Return (pointer to) minimal element in S larger than e
 - PREDECESSOR(e): Return (pointer to) maximal element in S smaller than e

1.1 Ordered array implementation

- The first implementation that comes to mind is the ordered array:
 \[1\ 3\ 5\ 6\ 7\ 8\ 9\ 11\ 12\ 15\ 17\]
 - SEARCH can be performed in $O(n)$ time by scanning through array or in $O(\log n)$ time using binary search
 - PREDECESSOR/SUCCESSOR can be performed in $O(\log n)$ time like searching
 - INSERT/DELETE takes $O(n)$ time since we need to expand/compress the array after finding the position of e

1.2 Double linked list implementation

- Unordered list
 \[
 \begin{array}{cccccccccccc}
 1 & 3 & 5 & 6 & 7 & 8 & 9 & 11 & 12 & 15 & 17
 \end{array}
 \]
 - SEARCH takes $O(n)$ time since we have to scan the list
 - PREDECESSOR/SUCCESSOR takes $O(n)$ time
 - INSERT takes $O(1)$ time since we can just insert e at beginning of list
 - DELETE takes $O(n)$ time since we have to perform a search before spending $O(1)$ time on deletion

- Ordered list
 \[
 \begin{array}{cccccccccccc}
 1 & 3 & 5 & 6 & 7 & 8 & 9 & 11 & 12 & 15 & 17
 \end{array}
 \]
 - SEARCH takes $O(n)$ time since we cannot perform binary search
1.3 Binary search tree implementation

- Binary search naturally leads to definition of binary search tree

- Predecessor/Successor takes $O(n)$ time
- Insert/Delete takes $O(n)$ time since we have to perform a search to locate the position of insertion/deletion

• Binary tree with elements in nodes
- If node v holds element e then
 * All elements in left subtree $< e$
 * All elements in right subtree $> e$

- Search(e) in $O(\text{height})$: Compare with e and recursively search in left or right subtree
- Insert(e) in $O(\text{height})$: Search for e and insert at place where search path terminates (Note: height may increase)

Example: Insertion of 13
– **Delete(e)** in $O(\text{height})$: Search for node v containing e,

1. v is a leaf: Delete v
2. v is internal node with one child: Delete v and attach $\text{child}(v)$ to $\text{parent}(v)$

Example: Delete 7

3. v is internal node with two children:

 * exchange e in v with successor e' in node v' (minimal element in right subtree, found by following left branches as long as possible in right subtree)
 * v' node can be deleted by case 1 or 2

Example: Delete 12

• Note:

 – Running time of all operations depend on height of tree.
 – Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.
 – In worst case the height can be $O(n)$.
2 Skip lists

- There are several schemes for keeping search trees reasonably balanced and obtain $O(\log n)$ bounds
 - Often quite complicated—We will discuss one way (red-black trees) later.

- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
 - We will now discuss how randomization can be used to obtain a very simple search structure with expected case performance $O(\log n)$ (independent of data/operations!)

- Idea in a skip list is best illustrated if we try to build a “search tree” on top of double linked list:
 - Insert elements $-\infty$ and ∞
 - Repeatedly construct double linked list (level S_i) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together)

- Number of levels is $O(\log n)$

Example: Search for 8

$O(\log n)$ time since we move at most one step to the right at each level.

- Predecessor/Successor also in $O(\log n)$ time
- *Insert/Delete* seems hard to do in better than $O(n)$ time since we might need to rebuild the entire structure after one of the operations.

- Idea in skip list is to let level S_i consist of a randomly generated subset of elements at level S_{i-1}.

 - To decide if an element on level S_{i-1} should be on level S_i, we flip a coin and include the element if it is head.

 \[
 \begin{align*}
 \text{Expected size of } S_1 & \text{ is } \frac{n}{2} \\
 \text{Expected size of } S_2 & \text{ is } \frac{n}{4} \\
 \vdots \\
 \text{Expected size of } S_i & \text{ is } \frac{n}{2^i} \quad \downarrow \\
 \text{Expected height is } & \mathcal{O}(\log n)
 \end{align*}
 \]

- Operations:
 - *Search(e)* as before.
 - *Delete(e)*: Search to find e and delete all occurrences of e.
 - *Insert(e)*:
 * search to find position of e in S_0
 * Insert e in S_0.
 * Repeatedly flip a coin; insert e and continue to next level if it comes up head.

- Running time of all the operations is bounded by search running time

 - Down search takes $\mathcal{O}(\text{height}) = \mathcal{O}(\log n)$ expected.
 - Right search/scan:
 * If we scan an element on level i it cannot be on level $i + 1$ (because then we would have scanned it there)
 \[
 \downarrow
 \]
 * Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head
 \[
 \downarrow
 \]
 * We expect to scan 2 elements on level i
 \[
 \downarrow
 \]
 * Running time is $\mathcal{O}(\text{height}) = \mathcal{O}(\log n)$ expected.

- Note:
 - We only really need forward and down pointers.
 - Expected space use is $\sum_{i=0}^{\log n \frac{n}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = \mathcal{O}(n)}$.