1 Amortized Analysis

- After discussing algorithm design techniques (Dynamic programming and Greedy algorithms) we now return to data structures and discuss a new analysis method—Amortized analysis.
- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.
- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.
- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g. when using priority queue to sort)
- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.
- To capture this we define amortized time.

If any sequence of n operations on a data structure takes $\leq T(n)$ time, the amortized time per operation is $T(n)/n$.

- Equivalently, if the amortized time of one operation is $U(n)$, then any sequence of n operations takes $n \cdot U(n)$ time.

- Again keep in mind: “Average” is over a sequence of operations for any sequence
 - not average for some input distribution (as in quick-sort)
 - not average over random choices made by algorithm (as in skip-lists)
1.1 Example: Stack with MULTIPOP

- As we know, a normal stack is a data structure with operations
 - **PUSH**: Insert new element at top of stack
 - **POP**: Delete top element from stack

- A stack can easily be implemented (using linked list) such that **PUSH** and **POP** takes $O(1)$ time.

- Consider the addition of another operation:
 - **MULTIPOP(k)**: **POP** k elements off the stack.

- Analysis of a sequence of n operations:
 - One **MULTIPOP** can take $O(n)$ time $\Rightarrow O(n^2)$ running time.
 - Amortized running time of each operation is $O(1) \Rightarrow O(n)$ running time.
 * Each element can be popped at most once each time it is pushed
 - Number of **POP** operations (including the one done by **MULTIPOP**) is bounded by n
 - Total cost of n operations is $O(n)$
 - Amortized cost of one operation is $O(n)/n = O(1)$.

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under n **INCREMENT** operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array A of bits such that $A[i]$ is either 0 or 1.
 - $A[0]$ is lowest order bit, so value of counter is $x = \sum_{i \geq 0} A[i] \cdot 2^i$
 - **INCREMENT** operation:

```
A[0] = A[0] + 1
i = 0
WHILE A[i] = 2 DO
    A[i + 1] = A[i + 1] + 1
    A[i] = 0
    i = i + 1
OD
```

- The running time of **INCREMENT** is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is $A[0]$):

$x = 47 \Rightarrow A = \langle 0, \ldots, 0, 1, 0, 1, 1, 1 \rangle$

$x = 48 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 0 \rangle$

$x = 49 \Rightarrow A = \langle 0, \ldots, 0, 1, 1, 0, 0, 1 \rangle$

INCREMENT from $x = 47$ to $x = 48$ has cost 5
INCREMENT from $x = 48$ to $x = 49$ has cost 1
• Analysis of a sequence of \(n \) INCREMENTS

 – Number of bits in representation of \(n \) is \(\log n \) \(\Rightarrow \) \(n \) operations cost \(O(n \log n) \).

 – Amortized running time of INCREMENT is \(O(1) \) \(\Rightarrow \) \(O(n) \) running time:

 * \(A[0] \) flips on each increment (\(n \) times in total)
 * \(A[1] \) flips on every second increment (\(n/2 \) times in total)
 * \(A[2] \) flips on every fourth increment (\(n/4 \) times in total)

 :
 * \(A[i] \) flips on every \(2^i \)th increment (\(n/2^i \) times in total)

 \[\downarrow \]

 Total running time:

 \[T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i} \leq n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i = O(n) \]

\[2\] Potential Method

• In the two previous examples we basically just did a careful analysis to get \(O(n) \) bounds leading to \(O(1) \) amortized bounds.

 – book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by \(n \))

 – other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.

• Potential method:

 – Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).

 – Leads to equivalent but slightly different definition of amortized time.

• Consider performing \(n \) operations on an initial data structure \(D_0 \)

 – \(D_i \) is data structure after \(i \)th operation, \(i = 1, 2, \ldots, n \).

 – \(c_i \) is actual cost (time) of \(i \)th operation, \(i = 1, 2, \ldots, n \).

 \[\downarrow \]

 Total cost of \(n \) operations is \(\sum_{i=0}^{n} c_k \).

• We define potential function mapping \(D_i \) to \(R \). (\(\Phi : D_i \rightarrow R \))

 – \(\Phi(D_i) \) is potential associated with \(D_i \)

• We define amortized cost \(\tilde{c}_i \) of \(i \)th operation as \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)

 – \(\tilde{c}_i \) is sum of real cost and increase in potential

 \[\downarrow \]

 – If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits).

 – If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
Key is that, as previously, we can bound total cost of all the \(n \) operations by the total amortized cost of all \(n \) operations:

\[
\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i)) = \Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i
\]

↓

\[
\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i \quad \text{if } \Phi(D_0) = 0 \quad \text{and} \quad \Phi(D_i) \geq 0 \quad \text{for all } i \quad \text{(or even if just } \Phi(D_n) \geq \Phi(D_0))
\]

Note: Amortized time definition consistent with earlier definition

1

\[
\frac{1}{n} \sum_{i=1}^{n} c_i = \frac{1}{n} \sum_{i=1}^{n} \tilde{c}_i \quad \Rightarrow \quad \tilde{c}_i = \frac{1}{n} \sum_{i=1}^{n} c_i
\]

2.1 Example: Stack with multipop

- Define \(\Phi(D_i) \) to be the size of stack \(D_i \Rightarrow \Phi(D_0) = 0 \quad \text{and} \quad \Phi(D_i) \geq 0 \)

- Amortized costs:

 - **Push:**
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 \]
 \[
 = 1 + 1
 \]
 \[
 = 2
 \]
 \[
 = O(1).
 \]

 - **Pop:**
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 \]
 \[
 = 1 + (-1)
 \]
 \[
 = 0
 \]
 \[
 = O(1).
 \]

 - **Multipop(\(k \)):**
 \[
 \tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 \]
 \[
 = k + (-k)
 \]
 \[
 = 0
 \]
 \[
 = O(1).
 \]

- Total cost of \(n \) operations: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).

2.2 Example: Binary counter

- Define \(\Phi(D_i) = \sum_{i \geq 0} A[i] \Rightarrow \Phi(D_0) = 0 \quad \text{and} \quad \Phi(D_i) \geq 0 \)

 - \(\Phi(D_i) \) is the number of ones in counter.

- Amortized cost of \(i \)th operation: \(\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \)

 - Consider the case where first \(k \) positions in \(A \) are \(1 \) \(A = < 0, 0, \cdots, 1, 1, 1, 1, \cdots, 1 > \)

 - In this case \(c_i = k + 1 \)
 - \(\Phi(D_i) - \Phi(D_{i-1}) \) is \(-k + 1 \) since the first \(k \) positions of \(A \) are \(0 \) after the increment and the \(k + 1 \)th position is changed to \(1 \) (all other positions are unchanged)

 ↓

 \[
 \tilde{c}_i = k + 1 - k + 1 = 2 = O(1)
 \]

- Total cost of \(n \) increments: \(\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n) \).
2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:
- Every element holds one credit.
- PUSH: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- POP: Use credit of removed element to pay for the operation.
- MULTIPOP: Use credits on removed elements to pay for the operation.

In counter example:
- Every 1 in A holds one credit.
- Change from 1 → 0 payed using credit.
- Change from 0 → 1 payed by INCREMENT; pay one credit to do the flip and place one credit on new 1.
 \[\Downarrow\]
 INCREMENT cost $O(1)$ amortized (at most one 0 → 1 change).

- Book calls this the accounting method
 - Note: Credits only used for analysis and is not part of data structure

- Hard part of amortized analysis is often to come up with potential function Φ
 - Some people prefer using potential function (potential method), some prefer thinking about placing credits on data structure (Accounting method)
 - Accounting method often good for relatively easy examples.

- Amortized analysis defined in late ’80-ies ⇒ great progress (new structures!)
- Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized $O(\log n)$ bonds for all operations (splay trees).