1 Introduction

- Class is about \textit{designing} and \textit{analyzing algorithms}

 - \textit{Algorithm}: A well-defined procedure that takes an input and computes some output.

 * Not a program (but often specified like it): An algorithm can often be implemented in several ways.

 - \textit{Design}: Methods/ideas for developing (efficient) algorithms.

 - \textit{Analysis}: Abstract/mathematical comparison of algorithms (without actually implementing them). Think of analysis as a measure of the quality of your algorithm and use it to justify design decisions when you write programs.

- In this class we do all these:

 - come up with solutions for a problem

 - prove that it is correct

 - analyze its running time

- Hopefully the class will show that \textbf{algorithms matter}!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

- Input: \textit{n} integers in array \(A[1..n]\)

- Output: \textit{A} sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in a (Pascal like) pseudo-code that we will use to describe algorithms.

\begin{verbatim}
INSERTION-SORT(A)
 For j = 2 to n DO
 key = A[j]
 i = j - 1
 WHILE i > 0 and A[i] > key DO
 A[i + 1] = A[i]
 i = i - 1
 OD
 A[i + 1] = key
 OD
\end{verbatim}
How does it work? Example:

```
5  2  4  6  1  3  j=2  i=1  key=2
5  5  4  6  1  3  i=0
2  5  4  6  1  3

2  5  4  6  1  3  j=3  i=2  key=4
2  5  5  6  1  3  i=1
2  4  5  6  1  3

2  4  5  6  1  3  j=4  i=3  key=6
2  4  5  6  1  3

2  4  5  6  1  3  j=5  i=4  key=1
2  4  5  6  3  i=3
2  4  5  5  6  3  i=2
2  4  4  5  6  3  i=1
2  2  4  5  6  3  i=0
1  2  4  5  6  3

1  2  4  5  6  3  j=6  i=5  key=3
1  2  4  5  6  6  i=4
1  2  4  5  5  6  i=3
1  2  4  4  5  6  i=2
1  2  3  4  5  6
```

2.1 Correctness

We prove correctness by finding and proving certain conditions that hold at some point in the algorithm for any input. These are called invariants.

- Prove the following loop invariant: “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.
 - When j=n+1 (Termination) we have the correct output.
- The loop invariant can be proved by induction (try it!).
- Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis

- We want to predict the resource use of the algorithm.
- We can be interested in different resources (like main memory, bandwidth), but normally running time.
To analyze running time without actually implementing the algorithm we need a mathematical model of a computer:

Random-access machine (RAM) model:

- Instructions executed sequentially one at a time
- All instructions take unit time:
 * Load/Store
 * Arithmetics (e.g. +, -, *, /)
 * Logic (e.g. >)
- Main memory is infinite

- The running time of an algorithm is the number of instructions it executes in the RAM model of computation.

- RAM model not completely realistic, e.g.
 - main memory not infinite (even though we often imagine it is when we program)
 - not all memory accesses take same time (cache, main memory, disk)
 - not all arithmetic operations take same time (e.g. multiplications expensive)
 - instruction pipelining
 - other processes

- But RAM model often enough to give relatively realistic results (if we don’t cheat too much).

- Running time of insertion-sort depends on many things
 - How sorted the input is
 - How big the input is
 - ...

- Normally we are interested in running time as a function of input size
 - in insertion-sort: n.

- Best-case running time: The shortest running time for any input of size n. The algorithm will never be faster than this.

- Worst-case running time: The longest running time for any input of size n. The algorithm will never be slower than this.

- Average-case running time: Be careful: average over what? Must assume an input distribution.

Let us analyze insertion-sort by assuming that line i in the program use c RAM instructions.
 - How many times are each line of the program executed?
 - Let t_j be the number of times line 4 (the WHILE statement) is executed in the j’th iteration.
FOR $j = 2$ to n DO
 key = $A[j]$
 $i = j - 1$
 WHILE $i > 0$ and $A[i] > key$ DO
 $A[i + 1] = A[i]$
 $i = i - 1$
 OD
 $A[i + 1] = key$
OD

- Running time: (depends on t_j) $T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} t_j + 2c \sum_{j=2}^{n} (t_j - 1) + c(n - 1)$
 - Best case: $t_j = 1$ (already sorted)

 $T(n) = cn + 2c(n - 1) + c(n - 1) + c(n - 1) = 5cn - 4c = k_1n - k_2$

 Linear function of n

 - Worst case: $t_j = j$ (sorted in decreasing order)
 $T(n) = cn + 2c(n - 1) + c \sum_{j=2}^{n} j + 2c \sum_{j=2}^{n} (j - 1) + c(n - 1) = cn + 2c(n - 1) + c \frac{n(n+1)}{2} - 1 + 2c \frac{(n-1)n}{2} + c(n - 1) = \ldots = k_3n^2 + k_4n - k_5$

 Quadratic function of n

 Note: We used $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ (Next week!)

 - Average case: We assume n numbers chosen randomly $\Rightarrow t_j = j/2$
 $T(n) = k_6n^2 + k_7n + k_8$

 Still Quadratic function of n

- Note:
 - We will normally be interested in worst-case running time.
 * For some algorithms, worst-case occur fairly often.
 * Average case often as bad as worst case (but not always!).
 - We will only consider order of growth of running time:
 * We already ignored cost of each statement and used the constants c.
 * We even ignored c and used k_i.
 * We simply said that best case was linear in n and worst/average case quadratic in n.

$\Rightarrow O$-notation (best case $O(n)$, worst/average case $O(n^2)$) (next lecture!)