CPS 130 Final Exam
Spring 2001

9am-12pm, Saturday May 5
Closed book exam

NAME: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max</th>
<th>Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2 (a)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3 (a)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3 (b)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4 (a)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4 (b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5 (a)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5 (b)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5 (c)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
- You can use any of the algorithms covered in class without describing them.
- When asked to describe an algorithm it is completely ok to do so with words (and a few accompanying pictures if it helps the description)—it is not recommended to write (pseudo-) code.

HONOR CODE

I have obeyed the honor code.

SIGNATURE: ________________________________
[15 points] **Problem 1:**

Show using induction (the substitution method) that the recurrence

$$T(n) = \begin{cases}
2 \cdot T(n/2) + n \log n & \text{if } n > 2 \\
1 & \text{otherwise}
\end{cases}$$

has solution $T(n) = O(n \log^2 n)$.
[15 points] Problem 2:

We want to maintain a data structure \(\mathcal{D} \) representing an infinite array of integers under the following operations:

- \(\text{INIT}(\mathcal{D}) \): Create a data structure for an infinite array with all entries being zero.
- \(\text{LOOKUP}(\mathcal{D}, x) \): Return the value of integer with index \(x \).
- \(\text{UPDATE}(\mathcal{D}, x, k) \): Change the value of integer with index \(x \) to \(k \).
- \(\text{MAX}(\mathcal{D}) \): Return the maximal index for which the corresponding integer is non-zero.
- \(\text{SUM}(\mathcal{D}) \): Return the sum of all integers in the array.

Describe an implementation of \(\mathcal{D} \) such that \(\text{INIT}, \text{MAX}, \) and \(\text{SUM} \) runs in \(O(1) \) time and \(\text{LOOKUP} \) and \(\text{UPDATE} \) in \(O(\log n) \) time, where \(n \) is the number of non-zero integers in the list.
[20 points] Problem 3:

An ordered stack \(S \) is a stack where the elements appear in increasing order. It supports the following operations:

- \(\text{INIT}(S) \): Create an empty ordered stack.
- \(\text{POP}(S) \): Delete and return the top element from the ordered stack.
- \(\text{PUSH}(S, x) \): Insert \(x \) at top of the ordered stack and reestablish the increasing order by repeatedly removing the element immediately below \(x \) until \(x \) is the largest element on the stack.
- \(\text{DESTROY}(S) \): Delete all elements on the ordered stack.

The following shows an example of an ordered stack and the same stack after performing a \(\text{PUSH}(S, 2) \) operation (the order is reestablished by removing 7, 5, and 3)

![Diagram showing ordered stack before and after PUSH(2) operation]

Like a normal stack we implement an ordered stack as a double linked list (maintaining a pointer to the top element).

a) What is the worst-case running time of each of the operations \(\text{INIT}, \text{POP}, \text{PUSH}, \) and \(\text{DESTROY} \)?
b) Argue that the amortized running time of all operations is \(O(1) \).
Problem 4:

A palindrome is a string that reads the same from front and back. Any string can be viewed as a sequence of palindromes if we allow a palindrome to consist of one letter.

Example: “bobseesanna” can e.g. be viewed as being made up of palindromes in the following ways:

- “bobseesanna” = “bob” + “sees” + “anna”
- “bobseesanna” = “bob” + “s” + “ee” + “s” + “anna”
- “bobseesanna” = “b” + “o” + “b” + “sees” + “a” + “n” + “n” + “a”

We are interested in computing $MinPal(s)$ defined as the minimum number of palindromes from which one can construct s (that is, the minimum k such that s can be written as $w_1w_2...w_k$ where $w_1,w_2,...,w_k$ are all palindromes).

Example: $MinPal(“bobseesanna”) = 3$ since “bobseesanna” = “bob” + “sees” + “anna” and we cannot write “bobseesanna” with less than 3 palindromes.

We can compute $MinPal(s)$ using the following formula

$$MinPal(s[i,j]) = \begin{cases} 1 & \text{if } s[i,j] \text{ is palindrome} \\ \min_{i\leq k<j}(MinPal(s[i,k]) + MinPal(s[k+1,j])) & \text{otherwise} \end{cases}$$

which can be implemented as follows

```
MinPal(i,j)

b=i, e=j
WHILE b<=e and s[b]=s[e] DO
  b=b+1
  e=e-1
END
IF b>=e THEN RETURN 1
/* s[i,j] is not palindrome */

min=j-i+1
FOR k=i to j-1 DO
  r=MinPal(i,k)+MinPal(k+1,j)
  IF r<min THEN min=r
END
RETURN min
```

END
a) Show that the running time of \text{MinPAl}(s) is exponential in the length \(n \) of \(s \).
b) Describe an $O(n^3)$ algorithm for solving the problem.
Problem 5:

A \textit{wheel-graph} is a directed graph of the following form:

![Wheel-Graph Diagram]

More precisely, a wheel-graph consists of a center vertex c with k outgoing “spokes” of s outward oriented edges each. Furthermore, the ith vertex ($i = 2, 3, \ldots, s + 1$) of all the spokes are connected to form a directed cycle. All cycles are oriented the same way (refer to the figure, in which $k = 8$ and $s = 2$).

a) What is the number of edges m in a wheel-graph as a function of the number of vertices n?

Assume we are given a wheel-graph with positive integer edge-weights. We want to find the length of the shortest paths from the center c to all other vertices.

b) How long time would Dijkstra’s algorithm use to solve the problem (as a function of n)?
c) Describe a more efficient algorithm for solving the problem. Remember to argue for both running time and correctness.