NAME:__

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max</th>
<th>Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2 (a)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2 (b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3 (a)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3 (b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5 (a)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5 (b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5 (c)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

- You can use any of the algorithms covered in class without describing them.
- When describing an algorithm, remember to include an argument for both correctness and running time.
[10 points] Problem 1:

1. The summation $\sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i$ is $\Theta(\)$.

2. Is it true that $\sqrt{n} = O(2^{\log_2 n})$?

3. The best case running time of Quicksort is $\Theta(\)$.

4. Given a heap with n elements, is it true that you can search for an element in $O(\log n)$ time?

5. Assume you have n positive integers in the range 1 through k. Counting Sort sorts the n integers in $O(\)$ time using $O(\)$ additional space.
[20 points] Problem 2:

a) Using the iteration method find an asymptotic tight bound for the recurrence:

\[T(n) = \begin{cases}
1 & \text{if } n \leq 3 \\
T(\sqrt{n}) + 1 & \text{if } n \geq 4
\end{cases} \]
b) Show using the substitution method (induction) that the recurrence above has solution $T(n) = O(lg \ lg n)$.
Problem 3:

Let A be an array of n (not necessarily distinct) integers.

a) Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n/2 \rceil$ times in A.

b) Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n/4 \rceil$ times in A.
[15 points] Problem 4:

In this problem we consider a monotonically decreasing function \(f : N \rightarrow \mathbb{Z} \) (that is, a function defined on the natural numbers taking integer values, such that \(f(i) > f(i+1) \)). Assuming we can evaluate \(f \) at any \(i \) in constant time, we want to find \(n = \min\{i \in N | f(i) \leq 0\} \) (that is, we want to find the value where \(f \) becomes negative).

We can obviously solve the problem in \(O(n) \) time by evaluating \(f(1), f(2), f(3), \ldots f(n) \). Describe an \(O(\log n) \) algorithm.

(Hint: Evaluate \(f \) on \(O(\log n) \) carefully chosen values between 1 and \(2n \) - but remember that you do not know \(n \) initially).
[35 points] **Problem 5:**

The *maximum partial sum* problem (*MPS*) is defined as follows. Given an array $A[1..n]$ of integers, find values of i and j with $1 \leq i \leq j \leq n$ such that

$$\sum_{k=i}^{j} A[k]$$

is maximized.

Example: For the array $[4,-5,6,7,8,-10,5]$, the solution to *MPS* is $i = 3$ and $j = 5$ (sum 21).

To help us design an efficient algorithm for the maximum partial sum problem, we consider the *left position* ℓ *maximal partial sum* problem (*LMPS$_\ell$*). This problem consists of finding value j with $\ell \leq j \leq n$ such that

$$\sum_{k=\ell}^{j} A[k]$$

is maximized. Similarly, the *right position* r *maximal partial sum* problem (*RMPS*$_r$), consists of finding value i with $1 \leq i \leq r$ such that

$$\sum_{k=i}^{r} A[k]$$

is maximized.

Example: For the array $[4,-5,6,7,8,-10,5]$ the solution to e.g. *LMPS*$_4$ is $j = 5$ (sum 15) and the solution to *RMPS*$_7$ is $i = 3$ (sum 16).
a) Describe $O(n)$ time algorithms for solving $LMPS_\ell$ and $RMPS_r$ for given ℓ and r.
b) Using an $O(n)$ time algorithm for $LMPS_l$, describe a simple $O(n^2)$ algorithm for solving MPS.
c) Using $O(n)$ time algorithms for $LMPS_l$ and $RMPS_r$, describe an $O(n \log n)$ divide-and-conquer algorithm for solving MPS.