Lecture 22: Shortest Paths

(CLRS 24.0, 24.3)

June 20th, 2002

1 Shortest Paths

- We will now consider a problem related to minimum spanning trees; shortest paths
- We already discussed how BFS can be used to find shortest paths if the length of a path is defined to be the number of edges on it
- In general we have weights on edges and we are interested in shortest paths with respect to the sum of the weights of edges on a path

Example: Finding shortest driving distance between two addresses (lots of www-sites with this functionality). Note that weight on an edge (road) can be more than just distance (weight can e.g. be a function of distance, road condition, congestion probability, etc).

- Formal definition of shortest path: $G=(V, E)$ weighted graph. Weight of path $P=<$ $v_{0}, v_{1}, v_{2}, \cdots, v_{k}>$ is $w(P)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$. Shortest path $\delta(u, v)$ from u to v has weight

$$
\delta(u, v)=\left\{\begin{array}{lc}
\min \{w(P): P \text { is path from } u \text { to } v\} & \text { If path exists } \\
\infty & \text { Otherwise }
\end{array}\right.
$$

Example: Shortest path from a to e (of length 21)

- Note:
- If $P=<u=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=v>$ is shortest path from u to v then for all $i<k$ $P^{\prime}=<u=v_{0}, v_{1}, v_{2}, \cdots, v_{i}>$ is shortest path from u to v_{i}
- Shortest path is not necessarily part of minimum spanning tree.

Example: Minimum spanning tree for example graph:

- No (unique) shortest path exists if graph has cycle with negative weight

Example: If we change weight of edge (h, i) to -8 , we have a cycle ($\mathrm{i}, \mathrm{h}, \mathrm{g}$) with negative weight (-1). Using this we can make the weight of path between a and e arbitrarily low by going through the cycle several times

On the other hand, the problem is well defined if we let edge (h, i) have weight -7 (no negative cycles)

- We will only consider graphs with non-negative weights
- Different variants of shortest path problem:
- Single pair shortest path: Find shortest path from u to v
- Single source shortest path (SSSP): Find shortest path from source s to all vertices $v \in V$
- All pair shortest path (APSP): Find shortest path from u to v for all $u, v \in V$
- Note:
- No algorithm is known for computing a single pair shortest path better than solving the ("bigger") SSSP problem
- APSP can be solved by running SSSP $|V|$ times
\Downarrow
We will concentrate on SSSP problem

2 SSSP for graphs with non-negative weights-Dijkstra's algorithm

- Recall Prim's greedy minimum spanning tree algorithm:
- Grows tree out from source s; repeatedly add minimum edge out of tree
- Correct by "cut theorem"
- Implemented using priority queue on vertices not yet in the tree
- Dijkstra's greedy algorithm for SSSP works almost the same way:
- Grow set (tree) S of vertices we know the shortest path to; repeatedly add new vertex v that can be reached from S using one edge. v is chosen as the vertex with the minimal path weight among paths $<s=v_{0}, v_{1}, \cdots v_{i}, v>$ with $v_{j} \in S$ for all $j \leq i$
- Implemented using priority queue on vertices in $V \backslash S$.

```
Dijkstra(s)
    FOR each \(v \in V\) DO
        \(d[v]=\infty\)
        \(\operatorname{Insert}(Q, v, \infty)\)
    OD
    \(S=\emptyset\)
    \(d[s]=0\)
    Change ( \(Q, s, 0\) )
    WHILE \(Q\) not empty DO
        \(u=\operatorname{Deletemin}(Q)\)
        \(S=S \cup\{u\}\)
        FOR each \(e=(u, v) \in E\) with \(v \in V \backslash S\) DO
            IF \(d[v]>d[u]+w(u, v)\) THEN
                \(d[v]=d[u]+w(u, v)\)
                Change ( \(Q, v, d[v]\) )
                \(\operatorname{visit}[v]=u\)
            FI
        OD
    OD
```

- Example:

- Analysis:
- While loop runs $|V|$ times \Rightarrow we perform $|V|$ Deletemin operations
- We perform at most one Change operation for each of the $|E|$ edges \Downarrow
$O((|E|+|V|) \log |E|)=O(|E| \log |V|)$ running time
- Note:
- Running time like Prim's minimal spanning tree algorithm
- Algorithm computes shortest path tree (stored using visit[v]) which can be used to find actual shortest paths
- Algorithm works for directed graphs as well
- Like Prim's algorithm, Dijkstra's algorithm can be improved to $O(|V| \log |V|+|E|)$ using another heap (Fibonacci heap)
- Correctness:
- We prove correctness by induction on size of S
- We will prove that after each iteration of the while-loop the following invariant holds:
a) $v \notin S \Rightarrow d[v]$ is length of shortest path from s to v among path of the form $<s, v_{o}, v_{1}, \ldots, v_{k}, v>$ where $v_{1}, v_{2}, \ldots, v_{k} \in S$
b) $v \in S \Rightarrow d[v]=\delta(s, v)(\delta(s, v)$ is length of shortest path from s to $v)$
\Downarrow
When algorithm terminates ($S=V$) we have solved SSSP

- Proof:

Invariant trivially holds initially $(S=\emptyset)$. To prove that invariant holds after one iteration of while-loop, given that it holds before the iteration, we need to prove that after adding u to S :
a) $d[v]$ correct for all $(u, v) \in E$ where $v \notin S$

- Easily seen to be true since $d[v]$ explicitly updated by algorithm (all the new paths to v of the special type go through u)
b) $d[u]=\delta(s, u)$
- Assume $d[u]>\delta(s, u)$, that is, the found path is not the shortest
- Consider shortest path to u and edge (x, y) on this path where $x \in S$ and $y \notin S$ (such an edge must exist since $s \in S$ and $u \notin S$)

- We chose u such that $d[u]$ was minimized $\Rightarrow d[y]>d[u] \Rightarrow w$ must me $<0 \Rightarrow$ contradiction since all weights are non-negative (note that we use that $d[y]$ is shortest path to y)

3 All pairs shortest path (APSP)—non-negative weights

- In the APSP problem, we want to compute the shortest path between any two vertices $u, v \in V$
- Note that the output is of size $O\left(|V|^{2}\right)$ so we cannot hope to design a better than $O\left(|V|^{2}\right)$ time algorithm
- We can solve the problem simply by running Dijkstra's algorithm $|V|$ times \Rightarrow $O(|V| \cdot|E| \log |V|)$ algorithm
- In the worst case (dense graph) this is $O\left(|V|^{3} \log |V|\right)$
- We can obtain a much simpler $O\left(|V|^{3}\right)$ algorithm by working on adjacency matrix A :

FOR $k=1$ to $\|V\|$ do
FOR $i=1$ to $\|V\|$ DO
FOR $j=1$ to $\|V\|$ DO
IF $A[i, j]>A[i, k]+A[k, j]$ THEN
$A[i, j]=A[i, k]+A[k, j]$
FI
OD
OD
OD

- Correctness:
- We prove correctness by induction
- We will prove that after each iteration of the k-loop the following invariant holds:

After the k 'th (out of $|V|$) iterations, $A[i, j]$ contains the length of shortest path from v_{i} to v_{j} that (apart from v_{i} and v_{j}) only contains vertices of index at most k \Downarrow
When algorithm terminates we have solved APSP

- Proof:
* Invariant holds initially (we start with adjacency matrix A).
* When "adding" vertex with index k we explicitly check all new paths between v_{i} and v_{j} through v_{k} for all $|V|^{2}$ pairs.
- Note:
- We can easily produce adjacency-matrix from adjacency list in $O\left(\left|V^{2}\right|\right)$ time
- Algorithm runs in $O\left(|V|^{3}\right)$ time, even if the graph is sparse. Using algorithm based on Dijkstra's algorithm we will get much better performance for sparse graphs.
- Using more efficient heap, algorithm based on Dijkstra's algorithm can be improved to $O\left(|V|^{2} \log |V|+|V| \cdot|E|\right)=O\left(|V|^{3}\right)$

