
Lecture 22: Shortest Paths
(CLRS 24.0, 24.3)

June 20th, 2002

1 Shortest Paths

• We will now consider a problem related to minimum spanning trees; shortest paths

– We already discussed how BFS can be used to find shortest paths if the length of a path
is defined to be the number of edges on it

– In general we have weights on edges and we are interested in shortest paths with respect
to the sum of the weights of edges on a path

Example: Finding shortest driving distance between two addresses (lots of www-sites
with this functionality). Note that weight on an edge (road) can be more than just dis-
tance (weight can e.g. be a function of distance, road condition, congestion probability,
etc).

• Formal definition of shortest path: G = (V,E) weighted graph. Weight of path P =<
v0, v1, v2, · · · , vk > is w(P) =

∑k
i=1 w(vi−1, vi). Shortest path δ(u, v) from u to v has weight

δ(u, v) =

{
min{w(P) : P is path from u to v} If path exists
∞ Otherwise

Example: Shortest path from a to e (of length 21)

7

9

14

2

4

21

7
8

8

10

11

4

b

h

e

fg

i

c d

a
6

a i

c d

e

fgh

b

• Note:

– If P =< u = v0, v1, v2, · · · , vk = v > is shortest path from u to v then for all i < k
P ′ =< u = v0, v1, v2, · · · , vi > is shortest path from u to vi

– Shortest path is not necessarily part of minimum spanning tree.

Example: Minimum spanning tree for example graph:

1

9

14

2

4

21

11
7

8

4

10

8 7

h

c d

e

fg

i

b

a
6

a i

c d

e

fgh

b

– No (unique) shortest path exists if graph has cycle with negative weight

Example: If we change weight of edge (h, i) to −8, we have a cycle (i,h,g) with negative
weight (−1). Using this we can make the weight of path between a and e arbitrarily low
by going through the cycle several times

10

9

14

2

4

21

11

8 7

4

8

b d

e

fg

i

c

a

h

6
i

c d

e

fgh

b

a
−8

On the other hand, the problem is well defined if we let edge (h, i) have weight −7 (no
negative cycles)

– We will only consider graphs with non-negative weights

• Different variants of shortest path problem:

– Single pair shortest path: Find shortest path from u to v

– Single source shortest path (SSSP): Find shortest path from source s to all vertices v ∈ V

– All pair shortest path (APSP): Find shortest path from u to v for all u, v ∈ V

• Note:

– No algorithm is known for computing a single pair shortest path better than solving the
(“bigger”) SSSP problem

– APSP can be solved by running SSSP |V | times
⇓
We will concentrate on SSSP problem

2

2 SSSP for graphs with non-negative weights—Dijkstra’s algo-
rithm

• Recall Prim’s greedy minimum spanning tree algorithm:

– Grows tree out from source s; repeatedly add minimum edge out of tree

– Correct by “cut theorem”

– Implemented using priority queue on vertices not yet in the tree

• Dijkstra’s greedy algorithm for SSSP works almost the same way:

– Grow set (tree) S of vertices we know the shortest path to; repeatedly add new vertex v
that can be reached from S using one edge. v is chosen as the vertex with the minimal
path weight among paths < s = v0, v1, · · · vi, v > with vj ∈ S for all j ≤ i

– Implemented using priority queue on vertices in V \ S.

Dijkstra(s)

FOR each v ∈ V DO

d[v] = ∞
Insert(Q, v,∞)

OD

S = ∅
d[s] = 0

Change(Q, s, 0)

WHILE Q not empty DO

u = Deletemin(Q)
S = S ∪ {u}
FOR each e = (u, v) ∈ E with v ∈ V \ S DO

IF d[v] > d[u] + w(u, v) THEN
d[v] = d[u] + w(u, v)
Change(Q, v, d[v])
visit[v] = u

FI
OD

OD

3

• Example:

9

1

11
7

8

8

4

2

2

7

14

9

10

4

8

8

7

10

9

14

7

2

4

21

11
7

8

8

4

11

1 2

44

14

2

8

2

7

7

2

4

1

11
7

14

8

4

10

10

9

66

66

a)
b

h g f

a

c d

i

fgh

b

e

8

4 12

e0

c

ia

d

a i

c d

e

fgh

b

8

4

0

12c)

0

15

9

d)

a i

c d

e

fgh

b
b)

8

4

0

2

10

9

4

10

9

14

7

2

4

21

11
7

8

8

4

1

14

4

1

9

8

8

7
11

10

2

4

2

7

14

9

10

1

7

2

4

21

11
7

8

8 810

9

14

7

2

4

4

8

8

7
11

2

4

2

7

14

4

2

8

11
7

8

8

4

7

1

4

7

9

11

2

14

10
6

6

6

6

66

25

0

1198

b

h

f)

f

e

d

15

c

ia

h)

14

19

21

119

0

12

4

8

b

h g f

e

d

g

c

ia
14

19

21

g)

12

9

0

124

8

b

h

4

g f

e

dc

ia

11

e)

9

15

0

12

a i

c d

e

fgh

b

11

8

4 12

0

9 11

21

19

14

4

8

b

h g f

e

dc

ia

a i

c d

e

fgh

b

8

4 12

0

9 11

21

19

14

i) j)

Vertex in S

Vertex in V \ S

21

• Analysis:

– While loop runs |V | times ⇒ we perform |V | Deletemin operations

– We perform at most one Change operation for each of the |E| edges
⇓
O((|E| + |V |) log |E|) = O(|E| log |V |) running time

4

• Note:

– Running time like Prim’s minimal spanning tree algorithm

– Algorithm computes shortest path tree (stored using visit[v]) which can be used to find
actual shortest paths

– Algorithm works for directed graphs as well

– Like Prim’s algorithm, Dijkstra’s algorithm can be improved to O(|V | log |V |+|E|) using
another heap (Fibonacci heap)

• Correctness:

– We prove correctness by induction on size of S

– We will prove that after each iteration of the while-loop the following invariant holds:

a) v /∈ S ⇒ d[v] is length of shortest path from s to v among path of the form
< s, vo, v1, . . . , vk, v > where v1, v2, . . . , vk ∈ S

b) v ∈ S ⇒ d[v] = δ(s, v) (δ(s, v) is length of shortest path from s to v)

⇓
When algorithm terminates (S = V) we have solved SSSP

– Proof:
Invariant trivially holds initially (S = ∅). To prove that invariant holds after one iteration
of while-loop, given that it holds before the iteration, we need to prove that after adding
u to S:

a) d[v] correct for all (u, v) ∈ E where v /∈ S

· Easily seen to be true since d[v] explicitly updated by algorithm (all the new
paths to v of the special type go through u)

b) d[u] = δ(s, u)
· Assume d[u] > δ(s, u), that is, the found path is not the shortest
· Consider shortest path to u and edge (x, y) on this path where x ∈ S and y /∈ S

(such an edge must exist since s ∈ S and u /∈ S)

Path from y to u has weight w
Shortest path from s to u

s

x
y

u

S

· We chose u such that d[u] was minimized ⇒ d[y] > d[u] ⇒ w must me < 0 ⇒
contradiction since all weights are non-negative (note that we use that d[y] is
shortest path to y)

5

3 All pairs shortest path (APSP)—non-negative weights

• In the APSP problem, we want to compute the shortest path between any two vertices
u, v ∈ V

– Note that the output is of size O(|V |2) so we cannot hope to design a better than O(|V |2)
time algorithm

• We can solve the problem simply by running Dijkstra’s algorithm |V | times ⇒
O(|V | · |E| log |V |) algorithm

– In the worst case (dense graph) this is O(|V |3 log |V |)
• We can obtain a much simpler O(|V |3) algorithm by working on adjacency matrix A:

FOR k = 1 to |V | do

FOR i = 1 to |V | DO

FOR j = 1 to |V | DO
IF A[i, j] > A[i, k] + A[k, j] THEN

A[i, j] = A[i, k] + A[k, j]
FI

OD

OD

OD

• Correctness:

– We prove correctness by induction

– We will prove that after each iteration of the k-loop the following invariant holds:
After the k’th (out of |V |) iterations, A[i, j] contains the length of shortest path from vi

to vj that (apart from vi and vj) only contains vertices of index at most k

⇓
When algorithm terminates we have solved APSP

– Proof:

∗ Invariant holds initially (we start with adjacency matrix A).
∗ When “adding” vertex with index k we explicitly check all new paths between vi

and vj through vk for all |V |2 pairs.

• Note:

– We can easily produce adjacency-matrix from adjacency list in O(|V 2|) time

– Algorithm runs in O(|V |3) time, even if the graph is sparse. Using algorithm based on
Dijkstra’s algorithm we will get much better performance for sparse graphs.

– Using more efficient heap, algorithm based on Dijkstra’s algorithm can be improved to
O(|V |2 log |V | + |V | · |E|) = O(|V |3)

6

