Lecture 21: Union-Find
 (CLRS 21.1-21.3)

June 19th, 2002

1 Union-Find

- We discussed Kruskal's minimum spanning tree algorithm

```
KRUSKAL
\(T=\emptyset\)
FOR each vertex \(v \in V\) DO
    Make-Set \((v)\)
OD
Sort edges of \(E\) in increasing order by weight
FOR each edge \(e=(u, v) \in E\) in order DO
    IF Find-Set \((u) \neq \operatorname{Find-SEt}(v)\) THEN
        \(T=T \cup\{e\}\)
        Union-Set \((u, v)\)
    FI
OD
```

- Kruskal's algorithm uses a Union-Find data structure supporting:
- Make-Set (v) : Create set consisting of v
- Union-Set (u, v) : Unite set containing u and set containing v
- Find-set(u): Return unique representative for set containing u
- In the algorithm we performed $|V|$ Make-Set, $|V|-1$ Union-set, and $2|E|$ Find-Set operations.
- Simple solution to Union-Find problem (maintain set system under Find-Set and UnionSET)
- Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:
Sets

Representation

- Make-SET $(v):$ Make a list with one element $\Rightarrow O(1)$ time
- Find-SET (u) : Follow pointer and return unique representative $\Rightarrow O(1)$ time
- Union-Set (u, v) : Link first element in list with unique representative $\operatorname{Find}-\operatorname{Set}(u)$ after last element in list with unique representative $\operatorname{Find}-\operatorname{SET}(v) \Rightarrow O(|V|)$ time (as we have to update all unique representative pointers in list containing u)
- With this simple solution the $|V|-1$ Union-SET operations in Kruskal's algorithm may take $O\left(|V|^{2}\right)$ time.
- We can improve the performance of UniOn-Set with a very simple modification: Always link the smaller list after the longer list (\Rightarrow update the pointers of the smaller list)
- One Union-SET operation can still take $O(|V|)$ time, but the $|V|-1$ Union-SET operations takes $O(|V| \log |V|)$ time altogether (one Union-SET takes $O(\log |V|)$ time amortized):
* Total time is proportional to number of unique representative pointer changes
* Consider element u :

After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before
\Downarrow
After k pointer changes, u is in list of size at least 2^{k} \Downarrow

Pointer can be changed at most $\log |V|$ times.

- With improvement, Kruskal's algorithm runs in time $O(|E| \log |E|+|V| \log |V|)=O((|E|+$ $|V|) \log |E|)=O(|E| \log |V|)$ like Prim's algorithm.

1.1 Improved Union-Find

- It turns out that Union-Find can be improved (but without leading to an improvement of Kruskal's algorithm)
- Linked list representation can also be viewed as trees of height 1

Example :

- Instead of updating root pointers when performing UniON-SET, we could just link one tree below the root of the other

Example: Union-SET(2,6)

Union-Set and Find-Set takes $O(\log |V|)$ time if we always insert small tree below larger tree (trees have height $O(\log |V|)$)
\Downarrow
$|E|$ Find-Set operations takes $O(|E| \log |V|))$ time

- If we furthermore perform path-compression, $|E|$ Find-set operations can be performed even faster
Path-compression: When following path during Find-Set we link traversed nodes directly to the root:

Example :

Note that a lot of paths are shortened (decreasing time spent on future Find-set operations) without using extra time

It can be shown that $O\left(|E| \log ^{*}|V|\right)$ is the total time used on the $O(|E|)$ Find-Set and Union-Set operations

- $\log ^{*} n$ is an extremely slow growing function
- Consider $g(n)= \begin{cases}2^{1} & \text { if } i=0 \\ 2^{2} & \text { if } i=1 \\ 2^{g(n-1)} & \text { if } i \geq 2\end{cases}$
\Downarrow
$g(0)=2$
$g(1)=2^{2}=4$
$g(2)=2^{2^{2}}=2^{4}=16$
$g(3)=2^{2^{2^{2}}}=2^{16}=65536$
\vdots
$g(i)=2^{2 \cdot{ }^{2}} \quad(2$-stack of height $i)$
\Downarrow
$g(n)$ extremely fast growing function.
- Define $\log ^{(i)} n= \begin{cases}n & \text { if } i=0 \\ \log \log ^{(i-1)} n & \text { otherwise }\end{cases}$
$-\log ^{*} n=\min \left\{i \geq 0: \log ^{(i)} n \leq 1\right\}$
\Downarrow
$\log ^{*} n$ is minimal number of times we need to take \log to get below 1
\Downarrow
$\log ^{*} n$ is inverse of $g(n)$
\Downarrow
$\log ^{*} n$ extremely slow growing function
$-\log ^{*} n \leq 5$ for all practical values of n
- One can even prove that with path-compression $O(|E| \cdot \alpha(|V|))$ is the total time spent on $|E|$ Find-Set operations, where $\alpha(n)$ is a function growing even slower than $\log ^{*} n$ (Inverse Ackerman function)
* $\alpha(n)<4$ for all practical values of n

