
Lecture 21: Union-Find
(CLRS 21.1-21.3)

June 19th, 2002

1 Union-Find

• We discussed Kruskal’s minimum spanning tree algorithm

KRUSKAL

T = ∅
FOR each vertex v ∈ V DO

Make-Set(v)

OD
Sort edges of E in increasing order by weight
FOR each edge e = (u, v) ∈ E in order DO

IF Find-Set(u) 6= Find-Set(v) THEN

T = T ∪ {e}
Union-Set(u, v)

FI

OD

• Kruskal’s algorithm uses a Union-Find data structure supporting:

– Make-set(v): Create set consisting of v

– Union-set(u, v): Unite set containing u and set containing v

– Find-set(u): Return unique representative for set containing u

• In the algorithm we performed |V | Make-Set, |V | − 1 Union-set, and 2|E| Find-Set
operations.

• Simple solution to Union-Find problem (maintain set system under Find-Set and Union-
set)

– Maintain elements in same set as a linked list with each element having a pointer to the
first element in the list (unique representative)

1

Example:

2
11

8
3

791112

1

6

10

5
4

12 7

9

3 2 1 10 6 8 5 4

Sets

Representation

– Make-Set(v): Make a list with one element ⇒ O(1) time

– Find-Set(u): Follow pointer and return unique representative ⇒ O(1) time

– Union-Set(u, v): Link first element in list with unique representative Find-Set(u)
after last element in list with unique representative Find-set(v) ⇒ O(|V |) time (as we
have to update all unique representative pointers in list containing u)

• With this simple solution the |V |−1 Union-Set operations in Kruskal’s algorithm may take
O(|V |2) time.

• We can improve the performance of Union-Set with a very simple modification: Always link
the smaller list after the longer list (⇒ update the pointers of the smaller list)

– One Union-Set operation can still take O(|V |) time, but the |V | − 1 Union-Set oper-
ations takes O(|V | log |V |) time altogether (one Union-Set takes O(log |V |) time amor-
tized):

∗ Total time is proportional to number of unique representative pointer changes
∗ Consider element u:

After pointer for u is updated, u belongs to a list of size at least double the size of
the list it was in before
⇓
After k pointer changes, u is in list of size at least 2k

⇓
Pointer can be changed at most log |V | times.

• With improvement, Kruskal’s algorithm runs in time O(|E| log |E| + |V | log |V |) = O((|E| +
|V |) log |E|) = O(|E| log |V |) like Prim’s algorithm.

2

1.1 Improved Union-Find

• It turns out that Union-Find can be improved (but without leading to an improvement of
Kruskal’s algorithm)

– Linked list representation can also be viewed as trees of height 1

Example :
3

1 2 10 6

8

4 5 12

– Instead of updating root pointers when performing Union-set, we could just link one
tree below the root of the other

Example: Union-set(2,6)

8

4 5 12

3

1 2 10 6

Union-Set and Find-Set takes O(log |V |) time if we always insert small tree below
larger tree (trees have height O(log |V |))
⇓
|E| Find-set operations takes O(|E| log |V |)) time

– If we furthermore perform path-compression, |E| Find-set operations can be performed
even faster
Path-compression: When following path during Find-Set we link traversed nodes di-
rectly to the root:

Example :

Find−set(x)

x

x

Note that a lot of paths are shortened (decreasing time spent on future Find-set oper-
ations) without using extra time

3

It can be shown that O(|E| log∗ |V |) is the total time used on the O(|E|) Find-Set and
Union-Set operations

• log∗ n is an extremely slow growing function

– Consider g(n) =




21 if i = 0
22 if i = 1
2g(n−1) if i ≥ 2

⇓
g(0) = 2
g(1) = 22 = 4
g(2) = 222

= 24 = 16

g(3) = 2222

= 216 = 65536
...

g(i) = 22..
2

(2-stack of height i)
⇓
g(n) extremely fast growing function.

– Define log(i) n =

{
n if i = 0
log log(i−1) n otherwise

– log∗ n = min{i ≥ 0 : log(i) n ≤ 1}
⇓
log∗ n is minimal number of times we need to take log to get below 1
⇓
log∗ n is inverse of g(n)
⇓
log∗ n extremely slow growing function

– log∗ n ≤ 5 for all practical values of n

– One can even prove that with path-compression O(|E| · α(|V |)) is the total time spent
on |E| Find-Set operations, where α(n) is a function growing even slower than log∗ n
(Inverse Ackerman function)

∗ α(n) < 4 for all practical values of n

4

