Lecture 20: Minimum Spanning Trees
(CLRS 23)

June 18, 2002

1 Graphs

Last time we defined (weighted) graphs (undirected/directed) and introduced basic graph
vocabulary (vertex, edge, degree, path, connected components, ...)

We also discussed adjacency list and adjacency matrix representation
— We will use adjacency list representation unless stated otherwise (O(|V] + |E|) space).

We discussed O(|V| + |E|) breadth-first (BFS) and depth-first search (DFS) algorithms and
how they can be used to compute e.g. connected components, shortest path distances in
unweighted graphs, and solve the topological sorting problem.

We will now start discussing more complicated problems/algorithms on weighted graphs.

2 Minimum Spanning tree (MST)

Problem: Given connected, undirected graph G = (V, E) where each edge (u,v) has weight
w(u,v). Find acyclic set T'C E connecting all vertices in V' with minimal weight

w(T) = Z(u,v)ET w(ua U)

Note: Problem is to find a spanning tree (acyclic set connecting all vertices) of minimal weight.
(we use minimum spanning tree as short for minimum weight spanning tree).

MST problem has many applications

— For example, think about connecting cities with minimal amount of wire (cities are
vertices, weight of edges are distances between city pairs).

Example:

— Weight of MST is 4 +8+7+9+2+4+1+2=37
— MST is not unique: e.g. (b,c) can be exchanged with (a, h)

2.1 PRIM’s algorithm
e Greedy algorithm for computing MST:

— Start with spanning tree containing arbitrary vertex r and no edges

— Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in
current spanning tree with a vertex not in the tree

e On the example graph, the greedy algorithm would work as follows (starting at vertex a):

e Implementation:

— To find minimal edge connected to current tree we maintain a priority queue on vertices
not in the tree. The key/priority of a vertex is the weight of minimal weight edge con-
necting it to the tree. (We maintain pointer from adjacency list entry of v to v in the
priority queue).

PRIM(r)

For each v € V DO
INSERT(Q, v, 00)

OD

CHANGE(Q, 1,0)

WHILE @ not empty DO

u = DELETEMIN(Q)
For each (u,v) € E DO
IF v € Q and w(u,v) < key(v) THEN
visit[v] = u
CHANGE(Q, v, w(u,v))
FI
OD
OD

e Analysis:

— While loop runs |V| times = we perform |V| DELETEMIN’s

— We perform at most one CHANGE for each of the |E| edges

4
O(([V]+ |E])1log |V]) = O(|E|log |V]) running time.

o Correctness:

— As discussed previously, when designing a greedy algorithm the hard part is often to
prove that it works correctly.

— We will prove a Theorem that allows us to prove the correctness of a general class of
greedy MST algorithms:

Some definitions
* A cut S is a partition of V into sets S and V' \ S
* A edge (u,v) crosses a cut Sifue SandveV\SorveSandueV\S
x A cut S respects a set T’ C F if no edge in T crosses the cut

Example: Cut S respects T’

cut"

V\S

o Theorem: If G = (V, E) is a graph such that 7' C E is subset of some MST of G, and S is
a cut respecting 17" then there is a MST for G containing 7" and the minimum weight edge
e = (u,v) crossing S.

e Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut consist
of current spanning tree.

e Proof:

— Let 7" be MST containing T’
— If e € T* we are done
—Ifeg¢ T

* There got to be (at least) one other edge (z,y) € T™* crossing the cut S such that
there is a unique path from w to v in 7" (T™ is spanning tree)

x This path together with e forms a cycle
« If we remove edge (x,y) from T and add e instead, we still have spanning tree

* New spanning tree must have same weight as 7™ since w(u,v) < w(z,y)

U
There is a MST containing 7" and e.

e The Theorem allows us to describe a very abstract greedy algorithm for MST:

T=10
While |T| < |V]| -1 DO

Find cut S respecting T’
Find minimal edge e crossing S
T =TU{e}

OD

— Prim’s algorithm follows this abstract algorithm.

3 Kruskal’s Algorithm

e Kruskal’s algorithm is another implementation of the abstract algorithm.
e Idea in Kruskal’s algorithm:

— Start with |V| trees (one for each vertex)

— Consider edges E in increasing order; add edge if it connects two trees

e Example:

e Correctness of Kruskal’s algorithm follows from Theorem: If minimal edge connects two trees
then a cut respecting the current set of edges exists (cut consisting of vertices in one of the
trees)

e Implementation:

KRUSKAL

T=10
FOR each vertex v € V DO
MAKE-SET(v)

OD
Sort edges of E in increasing order by weight
FOR each edge e = (u,v) € E in order DO

IF FIND-SET(u) # FIND-SET(v) THEN
T=TU{e}
UNION-SET(u, v)

FI

OD

— We need (Union-Find) data structure that supports:
* MAKE-SET(v): Create set consisting of v
* UNION-SET(u,v): Unite set containing v and set containing v
* FIND-SET(u): Return unique representative for set containing u
— We use O(|E|log | E|) time to sort edges and we perform |V| MAKE-SET, |V|—1 UNION-
SET, and 2|E| FIND-SET operations.

— Next time we will discuss a simple solution to the Union-Find problem (maintain set
system under FIND-SET and UNION-SET) such that MAKE-SET and FIND-SET take
O(1) time and UNION-SET takes O(log V') time amortized.

4
Kruskal’s algorithm runs in time O(|E|log|E| + |V|log |V|) = O((|E| + |V|)log |E|) =
O(|E|log |V]) like Prim’s algorithm.

e Note:

— Prim’s algorithm can be improved to O(|V|log |V |+ |E|) using another heap (Fibonacci
heap)

— Very recently an O(|V|+ |E|) randomized minimum spanning tree algorithm has been
developed.

