Lecture 20: Minimum Spanning Trees
 (CLRS 23)

June 18, 2002

1 Graphs

- Last time we defined (weighted) graphs (undirected/directed) and introduced basic graph vocabulary (vertex, edge, degree, path, connected components, ...)
- We also discussed adjacency list and adjacency matrix representation
- We will use adjacency list representation unless stated otherwise ($O(|V|+|E|)$ space).
- We discussed $O(|V|+|E|)$ breadth-first (BFS) and depth-first search (DFS) algorithms and how they can be used to compute e.g. connected components, shortest path distances in unweighted graphs, and solve the topological sorting problem.
- We will now start discussing more complicated problems/algorithms on weighted graphs.

2 Minimum Spanning tree (MST)

- Problem: Given connected, undirected graph $G=(V, E)$ where each edge (u, v) has weight $w(u, v)$. Find acyclic set $T \subseteq E$ connecting all vertices in V with minimal weight $w(T)=\sum_{(u, v) \in T} w(u, v)$
- Note: Problem is to find a spanning tree (acyclic set connecting all vertices) of minimal weight. (we use minimum spanning tree as short for minimum weight spanning tree).
- MST problem has many applications
- For example, think about connecting cities with minimal amount of wire (cities are vertices, weight of edges are distances between city pairs).
- Example:

- Weight of MST is $4+8+7+9+2+4+1+2=37$
- MST is not unique: e.g. (b, c) can be exchanged with (a, h)

2.1 PRIM's algorithm

- Greedy algorithm for computing MST:
- Start with spanning tree containing arbitrary vertex r and no edges
- Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree
- On the example graph, the greedy algorithm would work as follows (starting at vertex a):

- Implementation:
- To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of v to v in the priority queue).

```
PRIM(r)
For each \(v \in V\) DO
    \(\operatorname{Insert}(Q, v, \infty)\)
OD
Change \((Q, r, 0)\)
WHILE \(Q\) not empty DO
    \(u=\operatorname{Deletemin}(Q)\)
    For each \((u, v) \in E\) DO
        IF \(v \in Q\) and \(w(u, v)<\operatorname{key}(v)\) THEN
            \(\operatorname{visit}[v]=u\)
            Change \((Q, v, w(u, v))\)
        FI
    OD
OD
```

- Analysis:
- While loop runs $|V|$ times \Rightarrow we perform $|V|$ Deletemin's
- We perform at most one Change for each of the $|E|$ edges \Downarrow
$O((|V|+|E|) \log |V|)=O(|E| \log |V|)$ running time.
- Correctness:
- As discussed previously, when designing a greedy algorithm the hard part is often to prove that it works correctly.
- We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms:

Some definitions

* A cut S is a partition of V into sets S and $V \backslash S$
* A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \backslash S$ or $v \in S$ and $u \in V \backslash S$
* A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut

Example: Cut S respects T

- Theorem: If $G=(V, E)$ is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge $e=(u, v)$ crossing S.
- Note: Correctness of Prim's algorithm follows from the Theorem by induction-cut consist of current spanning tree.
- Proof:
- Let T^{*} be MST containing T
- If $e \in T^{*}$ we are done
- If $e \notin T^{*}$:
* There got to be (at least) one other edge $(x, y) \in T^{*}$ crossing the cut S such that there is a unique path from u to v in T^{*} (T^{*} is spanning tree)

* This path together with e forms a cycle
* If we remove edge (x, y) from T^{*} and add e instead, we still have spanning tree
* New spanning tree must have same weight as T^{*} since $w(u, v) \leq w(x, y)$ \Downarrow
There is a MST containing T and e.
- The Theorem allows us to describe a very abstract greedy algorithm for MST:
$T=\emptyset$
While $|T| \leq|V|-1$ DO
Find cut S respecting T
Find minimal edge e crossing S
$T=T \cup\{e\}$
OD
- Prim's algorithm follows this abstract algorithm.

3 Kruskal's Algorithm

- Kruskal's algorithm is another implementation of the abstract algorithm.
- Idea in Kruskal's algorithm:
- Start with $|V|$ trees (one for each vertex)
- Consider edges E in increasing order; add edge if it connects two trees
- Example:

- Correctness of Kruskal's algorithm follows from Theorem: If minimal edge connects two trees then a cut respecting the current set of edges exists (cut consisting of vertices in one of the trees)
- Implementation:

```
KRUSKAL
\(T=\emptyset\)
FOR each vertex \(v \in V\) DO
    Make-Set ( \(v\) )
OD
Sort edges of \(E\) in increasing order by weight
FOR each edge \(e=(u, v) \in E\) in order DO
    IF Find-Set \((u) \neq \operatorname{Find-Set}(v)\) THEN
        \(T=T \cup\{e\}\)
        Union-Set \((u, v)\)
    FI
OD
```

- We need (Union-Find) data structure that supports:
* Make-Set (v) : Create set consisting of v
* Union-Set (u, v) : Unite set containing u and set containing v
* Find-set (u) : Return unique representative for set containing u
- We use $O(|E| \log |E|)$ time to sort edges and we perform $|V|$ Make-Set, $|V|-1$ UnionSET, and $2|E|$ Find-Set operations.
- Next time we will discuss a simple solution to the Union-Find problem (maintain set system under Find-Set and Union-Set) such that Make-Set and Find-Set take $O(1)$ time and Union-Set takes $O(\log V)$ time amortized.
\Downarrow
Kruskal's algorithm runs in time $O(|E| \log |E|+|V| \log |V|)=O((|E|+|V|) \log |E|)=$ $O(|E| \log |V|)$ like Prim's algorithm.
- Note:
- Prim's algorithm can be improved to $O(|V| \log |V|+|E|)$ using another heap (Fibonacci heap)
- Very recently an $O(|V|+|E|)$ randomized minimum spanning tree algorithm has been developed.

