
Lecture 20: Minimum Spanning Trees
(CLRS 23)

June 18, 2002

1 Graphs

• Last time we defined (weighted) graphs (undirected/directed) and introduced basic graph
vocabulary (vertex, edge, degree, path, connected components, . . . )

• We also discussed adjacency list and adjacency matrix representation

– We will use adjacency list representation unless stated otherwise (O(|V | + |E|) space).

• We discussed O(|V | + |E|) breadth-first (BFS) and depth-first search (DFS) algorithms and
how they can be used to compute e.g. connected components, shortest path distances in
unweighted graphs, and solve the topological sorting problem.

• We will now start discussing more complicated problems/algorithms on weighted graphs.

2 Minimum Spanning tree (MST)

• Problem: Given connected, undirected graph G = (V,E) where each edge (u, v) has weight
w(u, v). Find acyclic set T ⊆ E connecting all vertices in V with minimal weight
w(T ) =

∑
(u,v)∈T w(u, v)

• Note: Problem is to find a spanning tree (acyclic set connecting all vertices) of minimal weight.
(we use minimum spanning tree as short for minimum weight spanning tree).

• MST problem has many applications

– For example, think about connecting cities with minimal amount of wire (cities are
vertices, weight of edges are distances between city pairs).

• Example:
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– Weight of MST is 4 + 8 + 7 + 9 + 2 + 4 + 1 + 2 = 37

– MST is not unique: e.g. (b, c) can be exchanged with (a, h)
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2.1 PRIM’s algorithm

• Greedy algorithm for computing MST:

– Start with spanning tree containing arbitrary vertex r and no edges

– Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in
current spanning tree with a vertex not in the tree

• On the example graph, the greedy algorithm would work as follows (starting at vertex a):
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• Implementation:

– To find minimal edge connected to current tree we maintain a priority queue on vertices
not in the tree. The key/priority of a vertex is the weight of minimal weight edge con-
necting it to the tree. (We maintain pointer from adjacency list entry of v to v in the
priority queue).
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PRIM(r)

For each v ∈ V DO
Insert(Q, v,∞)

OD
Change(Q, r, 0)
WHILE Q not empty DO

u = Deletemin(Q)
For each (u, v) ∈ E DO

IF v ∈ Q and w(u, v) < key(v) THEN
visit[v] = u

Change(Q, v,w(u, v))
FI

OD
OD

• Analysis:

– While loop runs |V | times ⇒ we perform |V | Deletemin’s

– We perform at most one Change for each of the |E| edges
⇓
O((|V | + |E|) log |V |) = O(|E| log |V |) running time.

• Correctness:

– As discussed previously, when designing a greedy algorithm the hard part is often to
prove that it works correctly.

– We will prove a Theorem that allows us to prove the correctness of a general class of
greedy MST algorithms:
Some definitions

∗ A cut S is a partition of V into sets S and V \ S

∗ A edge (u, v) crosses a cut S if u ∈ S and v ∈ V \ S or v ∈ S and u ∈ V \ S

∗ A cut S respects a set T ⊆ E if no edge in T crosses the cut

Example: Cut S respects T
"cut"

S

V \ S

= T

• Theorem: If G = (V,E) is a graph such that T ⊆ E is subset of some MST of G, and S is
a cut respecting T then there is a MST for G containing T and the minimum weight edge
e = (u, v) crossing S.
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• Note: Correctness of Prim’s algorithm follows from the Theorem by induction—cut consist
of current spanning tree.

• Proof:

– Let T ∗ be MST containing T

– If e ∈ T ∗ we are done

– If e /∈ T ∗:

∗ There got to be (at least) one other edge (x, y) ∈ T ∗ crossing the cut S such that
there is a unique path from u to v in T ∗ (T ∗ is spanning tree)

Cut

e

v

u
y

x

= T

∗ This path together with e forms a cycle
∗ If we remove edge (x, y) from T ∗ and add e instead, we still have spanning tree
∗ New spanning tree must have same weight as T ∗ since w(u, v) ≤ w(x, y)

⇓
There is a MST containing T and e.

• The Theorem allows us to describe a very abstract greedy algorithm for MST:

T = ∅
While |T | ≤ |V | − 1 DO

Find cut S respecting T

Find minimal edge e crossing S

T = T ∪ {e}
OD

– Prim’s algorithm follows this abstract algorithm.

3 Kruskal’s Algorithm

• Kruskal’s algorithm is another implementation of the abstract algorithm.

• Idea in Kruskal’s algorithm:

– Start with |V | trees (one for each vertex)

– Consider edges E in increasing order; add edge if it connects two trees
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• Example:
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• Correctness of Kruskal’s algorithm follows from Theorem: If minimal edge connects two trees
then a cut respecting the current set of edges exists (cut consisting of vertices in one of the
trees)
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• Implementation:

KRUSKAL

T = ∅
FOR each vertex v ∈ V DO

Make-Set(v)

OD
Sort edges of E in increasing order by weight
FOR each edge e = (u, v) ∈ E in order DO

IF Find-Set(u) 6= Find-Set(v) THEN

T = T ∪ {e}
Union-Set(u, v)

FI

OD

– We need (Union-Find) data structure that supports:

∗ Make-set(v): Create set consisting of v

∗ Union-set(u, v): Unite set containing u and set containing v

∗ Find-set(u): Return unique representative for set containing u

– We use O(|E| log |E|) time to sort edges and we perform |V | Make-Set, |V |−1 Union-
set, and 2|E| Find-Set operations.

– Next time we will discuss a simple solution to the Union-Find problem (maintain set
system under Find-Set and Union-Set) such that Make-Set and Find-Set take
O(1) time and Union-Set takes O(log V ) time amortized.
⇓
Kruskal’s algorithm runs in time O(|E| log |E| + |V | log |V |) = O((|E| + |V |) log |E|) =
O(|E| log |V |) like Prim’s algorithm.

• Note:

– Prim’s algorithm can be improved to O(|V | log |V |+ |E|) using another heap (Fibonacci
heap)

– Very recently an O(|V | + |E|) randomized minimum spanning tree algorithm has been
developed.
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