Lecture 19: Basic Graph Algorithms

(CLRS B.4-B.5, 22.1-22.4)

June 17th, 2002

1 Graph Problems

- You should already know about graphs
- Today we will quickly review basic definitions and a few fundamental graph algorithms.

1.1 Definitions

- A graph $G=(V, E)$ consists of a finite set of vertices V and a finite set of edges E.
- Directed graphs: E is a set of ordered pairs of vertices (u, v) where $u, v \in V$

$$
\begin{aligned}
\mathrm{V}= & \{1,2,3,4,5,6\} \\
\mathrm{E}= & \{(1,2),(2,2),(2,4),(2,5) \\
& (4,1),(4,5),(5,4),(6,3)
\end{aligned}
$$

- Undirected graph: E is a set of unordered pairs of vertices $\{u, v\}$ where $u, v \in V$

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,5\},\{2,5\},\{3,6\}\}
\end{aligned}
$$

- Edge (u, v) is incident to u and v
- Degree of vertex in undirected graph is the number of edges incident to it.
- In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.
- A path from u_{1} to u_{2} is a sequence of vertices $<u_{1}=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=u_{2}>$ such that $\left(v_{i}, v_{i+1}\right) \in E\left(\right.$ or $\left.\left\{v_{i}, v_{i+1}\right\} \in E\right)$
- We say that u_{2} is reachable from u_{1}
- The length of the path is k
- It is a cycle if $v_{0}=v_{k}$
- An undirected graph is connected if every pair of vertices are connected by a path
- The connected components are the equivalence classes of the vertices under the "reachability" relation. (All connected pair of vertices are in the same connected component).
- A directed graph is strongly connected if every pair of vertices are reachable from each other
- The strongly connected components are the equivalence classes of the vertices under the "mutual reachability" relation.
- Graphs appear all over the place in all kinds of applications, e.g:
- Trees $(|E|=|V|-1)$
- Connectivity/dependencies (house building plans, WWW-page connections, ...)
- Often the edges (u, v) in a graph have weights $w(u, v)$, e.g.
- Road networks (distances)
- Cable networks (capacity)

1.2 Representation

- Adjacency-list representation:
- Array of $|V|$ list of edges incident to each vertex.

Examples:

- Note: For undirected graphs, every edge is stored twice.
- If graph is weighted, a weight is stored with each edge.
- Adjacency-matrix representation:
- $|V| \times|V|$ matrix A where

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Examples:

j

	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	0	0	1	0
3	0	0	0	0	0	1
4	0	0	0	0	0	0
5	1	1	0	0	0	0
6	0	0	1	0	0	0

- Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal ($A^{T}=A$).
- If graph is weighted, weights are stored instead of one's.
- Comparison of matrix and list representation:

Adjacency list	Adjacency matrix
$O(\|V\|+\|E\|)$ space	$O\left(\|V\|^{2}\right)$ space
Good if graph sparse $\left(\|E\| \ll\|V\|^{2}\right)$	Good if graph dense $\left(\|E\| \approx\|V\|^{2}\right)$ No quick access to (u, v)
$O(1)$ access to (u, v)	

- We will use adjacency list representation unless stated otherwise ($O(|V|+|E|)$ space $)$.

2 Graph traversal

- There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way
- Breadth-first
- Depth-first
- We can use them in many fundamental algorithms, e.g finding cycles, connected components,

2.1 Breadth-first search (BFS)

- Main idea:
- Start at some source vertex s and visit,
- All vertices at distance 1,
- Followed by all vertices at distance 2,
- Followed by all vertices at distance 3,

$$
\vdots
$$

- BFS corresponds to computing shortest path distance (number of edges) from s to all other vertices.
- To control progress of our BFS algorithm, we think about coloring each vertex
- White before we start,
- Gray after we visit the vertex but before we have visited all its adjacent vertices,
- Black after we have visited the vertex and all its adjacent vertices (all adjacent vertices are gray).
- We use a queue Q to hold all gray vertices - vertices we have seen but are still not done with.
- We remember from which vertex a given vertex v is colored gray (visit $[v]$).
- Algorithm:

```
BFS(s)
    color \([s]=\) gray
    \(d[s]=0\)
    ENQUEUE \((Q, s)\)
    WHILE \(Q\) not empty DO
        DEQUEUE \((Q, u)\)
        FOR \((u, v) \in E\) DO
            IF color \([v]=\) white THEN
                color \([v]=\) gray
                \(d[v]=d[u]+1\)
                \(\operatorname{visit}[v]=\mathrm{u}\)
                ENQUEUE \((Q, v)\)
            FI
            \(\operatorname{color}[u]=\) black
    OD
```

- Algorithm runs in $O(|V|+|E|)$ time
- Example (for directed graph):
a)

c)

e)

g)

h)

i)

- Note:
- visit $[v]$ forms a tree; BFS-tree.
$-d[v]$ contains length of shortest path from s to v.
- We can use visit $[v]$ to find the shortest path from s to a given vertex.
- If graph is not connected we have to try to start the traversal at all nodes.

FOR each vertex $u \in V$ DO
\quad IF color $[u]=$ white $\operatorname{THEN} \operatorname{BFS}(u)$
OD

- Note: We can use algorithm to compute connected components in $O(|V|+|E|)$ time.

2.2 Depth-first search (DFS)

- If we use stack instead of queue Q we get another traversal order; depth-first
- We go "as deep as possible",
- Go back until we find unexplored adjacent vertex,
- Go as deep as possible,
\vdots
- Often we are interested in "start time" and "finish time" of vertex u
- Start time $(\mathrm{d}[u])$: indicates at what "time" vertex is first visited.
- Finish time ($\mathrm{f}[u]$): indicates at what "time" all adjacent vertices have been visited.
- Instead of using a stack in a DFS algorithms, we can write a recursive procedure
- We will color a vertex gray when we first meet it and black when we finish processing all adjacent vertices.
- Algorithm:

```
DFS(u)
    color \([u]=\) gray
    \(d[u]=\) time
    time \(=\) time +1
    FOR \((u, v) \in E\) DO
        IF color \([v]=\) white THEN
            \(\operatorname{visit}[v]=u\)
            DFS(v)
        FI
    OD
    color \([u]=\) black
    \(f[u]=\) time
    time \(=\) time +1
```

- Algorithm runs in $O(|V|+|E|)$ time
- As before we can extend algorithm to unconnected graphs and we can use it to detect cycles in $O(|V|+|E|)$ time.
- Example:
a)

b)

c)

e)

g)

i)

k)

f)

h)

j)

1)

m)

o)

n)

p)

- As previously visit $[v]$ forms a tree; $D F S$-tree
- Note: If u is descendent of v in DFS-tree then $d[v]<d[u]<f[u]<f[v]$

3 Topological sorting

- Definition: Topological sorting of directed acyclic graph $G=(V, E)$ is a linear ordering of vertices V such that $(u, v) \in E \Rightarrow u$ appear before v in ordering.
- Topological ordering can be used in scheduling:
- Example: Dressing (arrow implies "must come before")

We want to compute order in which to get dressed. One possibility:

The given order is one possible topological order.

- Algorithm: Topological order just reverse DFS finish time $(\Rightarrow O(|V|+|E|)$ running time $)$.
- Correctness: $(u, v) \in E \Leftrightarrow f(v)<f(u)$
- Proof: When (u, v) is explored by DFS algorithm, v must be white or black (gray \Rightarrow cycle).
* v white: v visited and finished before u is finished $\Rightarrow f(v)<f(u)$
* v black: v already finished $\Rightarrow f(v)<f(u)$
- Alternative algorithm: Count in-degree of each vertex and repeatedly number and remove in-degree 0 vertex and its outgoing edges:

```
FOR all vertices \(v\) DO
    degree \([v]=0\)
OD
FOR all edges \((u, v) \in E\) DO
    degree \([v]=\operatorname{degree}[v]+1\)
    \(\operatorname{IF}\) degree \([v]=0\) THEN \(\operatorname{Enqueve~}(Q, v)\)
OD
\(i=0\)
WHILE \(Q \neq \emptyset\) DO
    Dequeue \((Q, u)\)
    Topsort \((u)=i\)
    \(i=i+1\)
    FOR all edges \((u, v) \in E\) DO
        degree \([v]=\) degree \([v]-1\)
        IF degree \([v]=0\) THEN \(\operatorname{Enqueue~}(Q, v)\)
    OD
OD
```

