
Lecture 17: Splay Trees
Handout

June 12th, 2002

1 Amortized Analysis

• Last time we discussed amortized analysis of data structures

– A way of expressing that even though the worst-case performance of an operation can
be bad, the total performance of a sequence of operations cannot be too bad.

• One way of thinking of amortized time is as being an “average”: If any sequence of n opera-
tions takes less than T (n) time, the amortized time per operation is T (n)/n.

• We formally defined amortized time using the idea that we over-charge some operations and
store the over-charge as credits/potential that can then help pay for later operations (potential
method)

– Consider performing n operations on an initial data structure D0

– Di is data structure after ith operation.

– ci is actual cost (time) of ith operation.

– Potential function: Φ : Di → R

– c̃i amortized cost of ith operation: c̃i = ci + Φ(Di) − Φ(Di−1)

– Given Φ(D0) = 0 and Φ(Di) ≥ 0:
∑n

i=1 ci ≤ ∑n
i=1 c̃i

• We also discussed two examples of amortized analysis

– Stack with Multipop (O(n) worst-case, O(1) amortized).

– Increment on binary counter (O(log n) worst-case, O(1) amortized).

In both cases we could argue for O(1) amortized performance without actually doing potential
calculation—we just think about potential/credits as being distributed on certain parts of
the data structure and let operations put and take credits while maintaining some invariant
(accounting method).

1

2 Splay trees

• We have previously discussed binary search trees and how they can be kept balanced (O(log n)
height) during insert and delete operations (red-black trees).

– Rebalancing rather complicated

– Extra space used for the color of each node

• We also discussed skip lists which are a lot simpler than red-black trees

– Only guarantee O(log n) expected performance

– No extra information is used for rebalance information though

• Splay trees are search trees that “magically” balance themselves (no rebalance information is
stored) and have amortized O(log n) performance.

• Recall search trees:

– Binary tree with elements in nodes

– If node v holds element e then

∗ all elements in left subtree < e

∗ all elements in left subtree > e

• Splay tree:

– Normal (possibly unbalanced) search tree T

– All operations implemented using one basic operation, Splay:

Splay(x, T) searches for x in T and reorganizes tree such that x
(or min element > x or max element < x) is in root

– Search(x, T): Splay(x, T) and inspect root

– Insert(x, T): Splay(x, T) and create new root with x

T2

T2 T2

splay(x,T)
orT

T1 T1

T1

r x

r

x

r

2

– Delete(x, T):

∗ Splay(x, T) and remove root → tree falls into T1 and T2.
∗ Splay(x, T1)
∗ Make T2 right son of new root of T1 after splay

T2 T1’

splay(x,T)

T1’

splay(x,T1)

T2

T T1 T2

T1 T2

x

rr

⇓
All operations perform O(1) Splay’s and use O(1) extra time.
⇓
O(log n) amortized Splay gives O(log n) amortized bound on all operations.

• Implementation of Splay:

– Search for x like in normal search tree

– Repeatedly rotate x up until it becomes the root.
We distinguish between three cases:

1. x is child of root (no grandparent): rotate(x)

e.g.

T1

T3
T1

T3T2 T2

x

x

y

y

2. x has parent y and grandparent z and both x and y left (right) children: rotate(y)
followed by rotate(x)

e.g.

T1 T2 T3 T4

T4

T3

T1 T2

T1

T2

T4T3

yz

y
z

x
x

z

x

y

3

3. x has parent y and grandparent z and one of x and y is a left child and the other is
a right child: rotate(x) followed by rotate(x)

e.g.

T4 T2

T1

T3 T4T2T1T3T2

T1

T4T3

z

y
y

x

z

y x

z

x

• Note:

– A Splay can take O(n) worst-case time (very unbalanced tree)

– But Splay trees somehow seem to stay nicely balanced

Examples: Splay(1, T)
8

7

6

5

4

3

2

1

8

7

6

5

4

2

1

3

8

7

6

1

4

52

3

8

1

6

74

2

3

5

1

8

6

7

5

4

2

3

(type2) (type2) (type2) (type1)

Splay(5, T)
1

8

6

7

5

4

2

3

(type3) (type3)

1

8

5

6

7

4

2

3

5

8

6

7

1

4

2

3

4

• Analysis:

– We will use accounting method to show that all operations (Splay) takes O(log n) amor-
tized time.

∗ We will imagine that each node in tree has credits on it
∗ We will use some credits to pay for (part of) rotations during a splay
∗ We will see that we only have to place O(log n) new credits (on root) when perform-

ing an Insert or Delete

– Note that we will ignore cost of searching for x, since the rotations cost at least as much
as the search (⇒ if we can bound amortized rotation cost we also bound search cost).

– Let T (x) be tree rooted at x. We will maintain the credit invariant that each node x
holds µ(x) = blog |T (x)|c credits.

– We will prove the following lemma:

Less than or equal to 3(µ(T)−µ(x)+O(1)) credits are needed to perform
Splay(x, T) operation and maintain credit invariant

– Using this lemma we get that a splay operation uses at most 3blog nc+O(1) = O(log n)
credits (time).

– As an Insert or a Delete requires us to insert at most O(log n) extra credits (on the
root) more than the ones used on the Splay, we get the O(log n) amortized bound.

• Proof of lemma:

– Let µ and µ′ be the value of µ before and after a rotate operation in case 1, 2, or 3.

– During a Splay operation we perform a number of, say k ≥ 0, case 2 and 3 operations
and possibly a case 1 operation.

– Next time we will show that the cost of one operation is:

∗ Case 1: 3(µ′(x) − µ(x) + O(1))
∗ Case 2: 3(µ′(x) − µ(x))
∗ Case 3: 3(µ′(x) − µ(x))

⇓
When we sum over all ≤ k +1 operations in a splay we get 3(µ(T)−µ(x)+O(1)) where
µ(x) is the number of credits on x before the Splay.
Note that it is important that we only have the O(1) term in case 1.

• Case 1:

– We have: µ′(x) = µ(y), µ′(y) ≤ µ′(x) and all other µ’s are unchanged.

– To maintain invariant we use: µ′(x) + µ′(y) − µ(x) − µ(y) = µ′(y) − µ(x)
≤ µ′(x) − µ(x)
≤ 3(µ′(x) − µ(x))

– To do actual rotation we use O(1) credits.

5

• Case 2:

– We have µ′(x) = µ(z), µ′(y) ≤ µ′(x), µ′(z) ≤ µ′(x), µ(y) ≥ µ(x) and all other µ’s are
unchanged.

– To maintain invariant we use:
µ′(x) + µ′(y) + µ′(z) − µ(x) − µ(y) − µ(z) = µ′(y) + µ′(z) − µ(x) − µ(y)

= (µ′(y) − µ(x)) + (µ′(z) − µ(y))
≤ (µ′(x) − µ(x)) + (µ′(x) − µ(x))
= 2(µ′(x) − µ(x))

– This means that we can use the remaining µ′(x)−µ(x) credits to pay for rotation, unless
µ′(x) = µ(x) (can happen since µ(x) = blog |T (x)|c).

– We will show that if µ′(x) = µ(x) then µ′(x) + µ′(y) + µ′(z) < µ(x) + µ(y) + µ(z) which
means that the operation actually releases credits we can use for the rotation:

∗ Assume µ′(x) = µ(x) and µ′(x) + µ′(y) + µ′(z) ≥ µ(x) + µ(y) + µ(z)
∗ We have µ(z) = µ′(x) = µ(x)

⇓
µ(z) = µ(x) = µ(y)

and µ′(x) + µ′(y) + µ′(z) ≥ µ(x) + µ(y) + µ(z)
= 3µ(x)
= 3µ′(x)

⇓
µ′(y) + µ′(z) ≥ 2µ′(x)

∗ Since µ′(y) ≤ µ′(x) and µ′(z) ≤ µ′(x) we get µ′(x) = µ′(y) = µ′(z)
∗ Since µ(z) = µ′(x) we have µ(x) = µ(y) = µ(z) = µ′(x) = µ′(y) = µ′(z) which

cannot be true (and thus our initial assumption cannot be true):
Let a be |T (x)| before rotations (a = |T1| + |T2| + 1)
Let b be |T (z)| after rotations (b = |T3| + |T4| + 1)
Since µ(x) = µ′(z) = µ′(x) we have blog ac = blog bc = blog(a + b + 1)c but then we
have the following contradiction:
· if a ≤ b: blog(a + b + 1)c ≥ blog 2ac = 1 + blog ac > blog ac
· if a > b: blog(a + b + 1)c ≥ blog 2bc = 1 + blog bc > blog bc

• Case 3:

– Can be proved analogously to case 2.

6

