Lecture 16: Amortized Analysis
 (CLRS 17.1-17.3)

June 10th, 2002

1 Amortized Analysis

- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.
- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.
- Similarly, sometimes the cost of every single operation is not so important
- the total cost of a series of operations are more important (e.g when using priority queue to sort)
\Downarrow
- We want to analyze running time of one single operation averaged over a sequence of operations
- Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.
- To capture this we define amortized time.

If any sequence of n operations on a data structure takes $\leq T(n)$ time,
the amortized time per operation is $T(n) / n$

- Equivalently, if the amortized time of one operation is $U(n)$, then any sequence of n operations takes $n \cdot U(n)$ time.
- Again keep in mind: "Average" is over a sequence of operations for any sequence
- not average for some input distribution (as in quick-sort)
- not average over random choices made by algorithm (as in skip-lists)

1.1 Example: Stack with Multipop

- As we know, a normal stack is a data structure with operations
- Push: Insert new element at top of stack
- Pop: Delete top element from stack
- A stack can easily be implemented (using linked list) such that Push and Pop takes $O(1)$ time.
- Consider the addition of another operation:
- $\operatorname{Multipop}(k)$: Pop k elements off the stack.
- Analysis of a sequence of n operations:
- One Multipop can take $O(n)$ time $\Rightarrow O\left(n^{2}\right)$ running time.
- Amortized running time of each operation is $O(1) \Rightarrow O(n)$ running time.
* Each element can be popped at most once each time it is pushed
- Number of Pop operations (including the one done by Multipop) is bounded by n
- Total cost of n operations is $O(n)$
- Amortized cost of one operation is $O(n) / n=O(1)$.

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under n Increment operations (assuming that the counter value is initially 0)
- Data structure consists of an (infinite) array A of bits such that $A[i]$ is either 0 or 1 .
- $A[0]$ is lowest order bit, so value of counter is $x=\sum_{i \geq 0} A[i] \cdot 2^{i}$
- Increment operation:

$$
\begin{aligned}
& A[0]=A[0]+1 \\
& i=0 \\
& \mathrm{WHILE} A[i]=2 \mathrm{DO} \\
& \quad A[i+1]=A[i+1]+1 \\
& \quad A[i]=0 \\
& \quad i=i+1 \\
& \mathrm{OD}
\end{aligned}
$$

- The running time of Increment is the number of iterations of while loop +1 .

Example (Note: Bit furthest to the right is $A[0]$):
$x=47 \Rightarrow A=<0, \ldots, 0,1,0,1,1,1,1>$
$x=48 \Rightarrow A=<0, \ldots, 0,1,1,0,0,0,0>$
$x=49 \Rightarrow A=<0, \ldots, 0,1,1,0,0,0,1>$

Increment from $x=47$ to $x=48$ has cost 5
Increment from $x=48$ to $x=49$ has cost 1

- Analysis of a sequence of n Increments
- Number of bits in representation of n is $\log n \Rightarrow n$ operations cost $O(n \log n)$.
- Amortized running time of Increment is $O(1) \Rightarrow O(n)$ running time:
* $A[0]$ flips on each increment (n times in total)
* A[1] flips on every second increment ($n / 2$ times in total)
* $A[2]$ flips on every fourth increment ($n / 4$ times in total)

引

* $A[i]$ flips on every 2^{i} th increment ($n / 2^{i}$ times in total)
\Downarrow
Total running time: $T(n)=\sum_{i=0}^{\log n} \frac{n}{2^{i}}$
$\leq n \cdot \sum_{i=0}^{\log n}\left(\frac{1}{2}\right)^{i}$
$=O(n)$

2 Potential Method

- In the two previous examples we basically just did a careful analysis to get $O(n)$ bounds leading to $O(1)$ amortized bounds.
- book calls this aggregate analysis.
- In aggregate analysis, all operations have the same amortized cost (total cost divided by n)
- other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.
- Potential method:
- Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).
- Leads to equivalent but slightly different definition of amortized time.
- Consider performing n operations on an initial data structure D_{0}
- D_{i} is data structure after i th operation, $i=1,2, \ldots, n$.
$-c_{i}$ is actual cost (time) of i th operation, $i=1,2, \ldots, n$.
\Downarrow
Total cost of n operations is $\sum_{i=0}^{n} c_{k}$.
- We define potential function mapping D_{i} to $R .\left(\Phi: D_{i} \rightarrow R\right)$
- $\Phi\left(D_{i}\right)$ is potential associated with D_{i}
- We define amortized cost \tilde{c}_{i} of i th operation as $\tilde{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- \tilde{c}_{i} is sum of real cost and increase in potential \Downarrow
- If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)
- If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
- Key is that, as previously, we can bound total cost of all the n operations by the total amortized cost of all n operations:

$$
\begin{aligned}
& \sum_{i=1}^{n} c_{k}=\sum_{i=1}^{n}\left(\tilde{c}_{i}+\Phi\left(D_{i-1}\right)-\Phi\left(D_{i}\right)\right) \\
&=\Phi\left(D_{0}\right)-\Phi\left(D_{n}\right)+\sum_{i=1}^{n} \tilde{c}_{i} \\
& \Downarrow \\
& \sum_{i=1}^{n} c_{k} \leq\left.\sum_{i=1}^{n} \tilde{c}_{i} \text { if } \Phi\left(D_{0}\right)=0 \text { and } \Phi\left(D_{i}\right) \geq 0 \text { for all } i \text { (or even if just } \Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)\right)
\end{aligned}
$$

2.1 Example: Stack with multipop

- Define $\Phi\left(D_{i}\right)$ to be the size of stack $D_{i} \Rightarrow \Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0$
- Amortized costs:

$$
\begin{aligned}
&- \text { PUSH: } \\
& \tilde{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
&=1+1 \\
&=2 \\
&=O(1) \\
&-\mathrm{POP} \\
& \tilde{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
&=1+(-1) \\
&=0 \\
&=O(1)
\end{aligned}
$$

- Multipop (k) :

$$
\begin{aligned}
\tilde{c}_{i} & =c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =k+(-k) \\
& =0 \\
& =O(1)
\end{aligned}
$$

- Total cost of n operations: $\sum_{i=1}^{n} c_{k} \leq \sum_{i=1}^{n} \tilde{c}_{i}=O(n)$.

2.2 Example: Binary counter

- Define $\Phi\left(D_{i}\right)=\sum_{i \geq 0} A[i] \Rightarrow \Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0$
$-\Phi\left(D_{i}\right)$ is the number of ones in counter.
- Amortized cost of i th operation: $\tilde{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- Consider the case where first k positions in A are $1 A=<0,0, \cdots, 1,1,1,1, \cdots, 1>$
- In this case $c_{i}=k+1$
$-\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ is $-k+1$ since the first k positions of A are 0 after the increment and the $k+1$ th position is changed to 1 (all other positions are unchanged)
\Downarrow
$-\tilde{c}_{i}=k+1-k+1=2=O(1)$
- Total cost of n increments: $\sum_{i=1}^{n} c_{k} \leq \sum_{i=1}^{n} \tilde{c}_{i}=O(n)$.

2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure. In multipop example:
- Every element holds one credit.
- Push: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- Pop: Use credit of removed element to pay for the operation.
- Multipop: Use credits on removed elements to pay for the operation.

In counter example:

- Every 1 in A holds one credit.
- Change from $1 \rightarrow 0$ payed using credit.
- Change from $0 \rightarrow 1$ payed by Increment; pay one credit to do the flip and place one credit on new 1 .
\Downarrow Increment cost $O(1)$ amortized (at most one $0 \rightarrow 1$ change).
- Book calls this the accounting method
- Note: Credits only used for analysis and is not part of data structure
- Hard part of amortized analysis is often to come up with potential function Φ
- Some people prefer using potential function (potential method), some prefer thinking about placing credits on data structure (Accounting method)
- Accounting method often good for relatively easy examples.
- Next time we will discuss an elegant "self-adjusting" search tree data structure with amortized $O(\log n)$ bonds for all operations (splay trees).

