
Lecture 15: Greedy Algorithms
CLRS 16.1-16.2

June 7th, 2002

1 Greedy Algorithms

• We have previously discussed dynamic programming—a way of improving on inefficient divide-
and-conquer algorithm:

– If same subproblem is solved several times, use table to store result of a subproblem the
first time it is computed and never compute it again.

– Alternatively, we can think about filling up a table of subproblem solutions from the
bottom.

• In divide-and-conquer (and thus dynamic programming) we used the fact that the solution
to a problems depends on solutions to smaller subproblems.

• Another, simpler and often less powerful (and less well-defined), technique that uses the same
feature is greediness

• Like in the case of dynamic programming, we will introduce greedy algorithms via an example.

1.1 Activity Selection

• Problem: Given a set A = {A1, A2, · · · , An} of n activities with start and finish times (si, fi),
1 ≤ i ≤ n, select maximal set S of “non-overlapping” activities.

– One can think of the problem as corresponding to scheduling the maximal number of
classes (given their start and finish times) in one classroom.

• Solution:

– Sort activity by finish time (let A1, A2, · · · , An denote sorted sequence)

– Pick first activity A1

– Remove all activities with start time before finish time of A1

– Recursively solve problem on remaining activities.

1

• Program:

Sort A by finish time

S = {A1}
j = 1

FOR i = 2 to n DO

IF si ≥ sj THEN
S = S ∪ {Ai}
j = i

FI

OD

• Example:

– 11 activities sorted by finish time: (1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9),
(6, 10), (8, 11), (8, 12), (2, 13), (12, 14)

1 4

10

1

3 5

0 6

5 7

3 8

5 9

6

8 11

8 12

2 13

12 14

4 5 7 8 11 12 14

• Running time is obviously O(n log n).

2

• Is algorithm correct?

– Output is set of non-overlapping activities, but is it the largest possible?

• Proof of correctness:

– Given activities A = {A1, A2, · · · , An} ordered by finish time, there is an optimal solution
containing A1:

∗ Suppose S ⊆ A is optimal solution
∗ If A1 ∈ S, we are done
∗ If A1 /∈ S:

· Let first activity in S be Ak

· Make new solution S′ = S \ {Ak} ∪ {A1} by removing Ak and using A1 instead
· S′ is valid solution (f1 < fk) of maximal size (|S′| = |S|)

– S is an optimal solution for A containing A1 ⇒ S′ = S \ {A1} optimal solution for
A′ = {Ai ∈ A : sj ≥ f1} (e.g. after choosing A1 the problem reduces to finding optimal
solution for activities not overlapping with A1)

∗ Suppose we have solution S′′ to A′ such that |S′′| > |S′| = |S| − 1
∗ S′′′ = S′′ ∪ {A1} would be solution to A

∗ Contradiction since we would have |S′′′| > |S|
– Correctness follows by induction on size of S

• Comparison of greedy algorithm technique with dynamic programming (divide-and-conquer):

– In greedy algorithm we choose what looks like best solution at any given moment and
recurse (choice does not depend on solution to subproblems).

– In dynamic programming, solution depends on solution to subproblems.

– Both techniques use optimal solution to subproblems (optimal solution “contains optimal
solution for subproblems within it”).

• It is often hard to figure out when being greedy works!

Example:

– 0 − 1 knapsack problem: Given n items, with item i being worth $ vi and having
weight wi pounds, fill knapsack of capacity w pounds with maximal value.

– Fractional knapsack problem: As 0 − 1 knapsack problem but we can take
fractions of items.

– Problems appear very similar, but only fractional knapsack problem can be solved
greedily:

∗ Compute value per pound vi
wi

for each item
∗ Sort items by value per pound.
∗ Fill knapsack greedily (take objects in order)

⇓
O(n log n) time, easy to show that solution is optimal.

3

– Example that 0 − 1 knapsack problem cannot be solved greedily:

20

30

= $220

Optimal solution
for knapsack of
size 50

10
20

30

10

20
= $160$60

$100
$120

order

Items in value
per pound

Greedy solution
for knapsack of
size 50

Note: In fractional knapsack problem we can take 2
3 of $120 object and get $240

solution.

• 0 − 1 knapsack problem can be solved in time O(n · w) using dynamic-programming
(homework).

4

