Lecture 15: Greedy Algorithms

CLRS 16.1-16.2

June 7th, 2002

1 Greedy Algorithms

- We have previously discussed *dynamic programming*—a way of improving on inefficient divideand-conquer algorithm:
 - If same subproblem is solved several times, use table to store result of a subproblem the first time it is computed and never compute it again.
 - Alternatively, we can think about filling up a table of subproblem solutions from the bottom.
- In divide-and-conquer (and thus dynamic programming) we used the fact that the solution to a problems depends on solutions to smaller subproblems.
- Another, simpler and often less powerful (and less well-defined), technique that uses the same feature is *greediness*
- Like in the case of dynamic programming, we will introduce greedy algorithms via an example.

1.1 Activity Selection

- Problem: Given a set $A = \{A_1, A_2, \dots, A_n\}$ of n activities with start and finish times (s_i, f_i) , $1 \le i \le n$, select maximal set S of "non-overlapping" activities.
 - One can think of the problem as corresponding to scheduling the maximal number of classes (given their start and finish times) in one classroom.
- Solution:
 - Sort activity by finish time (let A_1, A_2, \dots, A_n denote sorted sequence)
 - Pick first activity A_1
 - Remove all activities with start time before finish time of A_1
 - Recursively solve problem on remaining activities.

• Program:

Sort A by finish time $S = \{A_1\}$ j = 1FOR i = 2 to n DO IF $s_i \ge s_j$ THEN $S = S \cup \{A_i\}$ j = iFI OD

- Example:
 - 11 activities sorted by finish time: (1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)

• Running time is obviously $O(n \log n)$.

- Is algorithm correct?
 - Output is set of non-overlapping activities, but is it the largest possible?
- Proof of correctness:
 - Given activities $A = \{A_1, A_2, \dots, A_n\}$ ordered by finish time, there is an optimal solution containing A_1 :
 - * Suppose $S \subseteq A$ is optimal solution
 - * If $A_1 \in S$, we are done
 - * If $A_1 \notin S$:
 - · Let first activity in S be A_k
 - · Make new solution $S' = S \setminus \{A_k\} \cup \{A_1\}$ by removing A_k and using A_1 instead
 - · S' is valid solution $(f_1 < f_k)$ of maximal size (|S'| = |S|)
 - S is an optimal solution for A containing $A_1 \Rightarrow S' = S \setminus \{A_1\}$ optimal solution for $A' = \{A_i \in A : s_j \ge f_1\}$ (e.g. after choosing A_1 the problem reduces to finding optimal solution for activities not overlapping with A_1)
 - * Suppose we have solution S'' to A' such that |S''| > |S'| = |S| 1
 - * $S''' = S'' \cup \{A_1\}$ would be solution to A
 - * Contradiction since we would have |S'''| > |S|
 - Correctness follows by induction on size of S
- Comparison of greedy algorithm technique with dynamic programming (divide-and-conquer):
 - In greedy algorithm we choose what looks like best solution at any given moment and recurse (choice does not depend on solution to subproblems).
 - In dynamic programming, solution depends on solution to subproblems.
 - Both techniques use optimal solution to subproblems (optimal solution "contains optimal solution for subproblems within it").
- It is often hard to figure out when being greedy works!

Example:

- -0-1 KNAPSACK PROBLEM: Given *n* items, with item *i* being worth \$ v_i and having weight w_i pounds, fill knapsack of capacity *w* pounds with maximal value.
- FRACTIONAL KNAPSACK PROBLEM: As 0-1 KNAPSACK PROBLEM but we can take fractions of items.
- Problems appear very similar, but only FRACTIONAL KNAPSACK PROBLEM can be solved greedily:
 - * Compute value per pound $\frac{v_i}{w_i}$ for each item
 - * Sort items by value per pound.
 - * Fill knapsack greedily (take objects in order) \Downarrow

 $O(n \log n)$ time, easy to show that solution is optimal.

- Example that 0 - 1 KNAPSACK PROBLEM cannot be solved greedily:

Note: In FRACTIONAL KNAPSACK PROBLEM we can take $\frac{2}{3}$ of \$120 object and get \$240 solution.

• 0 – 1 KNAPSACK PROBLEM can be solved in time $O(n \cdot w)$ using dynamic-programming (homework).