Lecture 15: Greedy Algorithms
 CLRS 16.1-16.2

June 7th, 2002

1 Greedy Algorithms

- We have previously discussed dynamic programming -a way of improving on inefficient divide-and-conquer algorithm:
- If same subproblem is solved several times, use table to store result of a subproblem the first time it is computed and never compute it again.
- Alternatively, we can think about filling up a table of subproblem solutions from the bottom.
- In divide-and-conquer (and thus dynamic programming) we used the fact that the solution to a problems depends on solutions to smaller subproblems.
- Another, simpler and often less powerful (and less well-defined), technique that uses the same feature is greediness
- Like in the case of dynamic programming, we will introduce greedy algorithms via an example.

1.1 Activity Selection

- Problem: Given a set $A=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ of n activities with start and finish times $\left(s_{i}, f_{i}\right)$, $1 \leq i \leq n$, select maximal set S of "non-overlapping" activities.
- One can think of the problem as corresponding to scheduling the maximal number of classes (given their start and finish times) in one classroom.
- Solution:
- Sort activity by finish time (let $A_{1}, A_{2}, \cdots, A_{n}$ denote sorted sequence)
- Pick first activity A_{1}
- Remove all activities with start time before finish time of A_{1}
- Recursively solve problem on remaining activities.
- Program:

$$
\begin{aligned}
& \text { Sort } A \text { by finish time } \\
& \begin{array}{l}
S=\left\{A_{1}\right\}
\end{array} \\
& \begin{array}{l}
j=1 \\
\text { FOR } i=2 \text { to } n \text { DO } \\
\text { IF } s_{i} \geq s_{j} \text { THEN } \\
\qquad \begin{array}{l}
S=S \cup\left\{A_{i}\right\} \\
j=i
\end{array} \\
\quad \text { FI } \\
\text { OD }
\end{array}
\end{aligned}
$$

- Example:
- 11 activities sorted by finish time: $(1,4),(3,5),(0,6),(5,7),(3,8),(5,9)$, $(6,10),(8,11),(8,12),(2,13),(12,14)$

- Running time is obviously $O(n \log n)$.
- Is algorithm correct?
- Output is set of non-overlapping activities, but is it the largest possible?
- Proof of correctness:
- Given activities $A=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ ordered by finish time, there is an optimal solution containing A_{1} :
* Suppose $S \subseteq A$ is optimal solution
* If $A_{1} \in S$, we are done
* If $A_{1} \notin S$:
- Let first activity in S be A_{k}
- Make new solution $S^{\prime}=S \backslash\left\{A_{k}\right\} \cup\left\{A_{1}\right\}$ by removing A_{k} and using A_{1} instead
- S^{\prime} is valid solution $\left(f_{1}<f_{k}\right)$ of maximal size $\left(\left|S^{\prime}\right|=|S|\right)$
$-S$ is an optimal solution for A containing $A_{1} \Rightarrow S^{\prime}=S \backslash\left\{A_{1}\right\}$ optimal solution for $A^{\prime}=\left\{A_{i} \in A: s_{j} \geq f_{1}\right\}$ (e.g. after choosing A_{1} the problem reduces to finding optimal solution for activities not overlapping with A_{1})
* Suppose we have solution $S^{\prime \prime}$ to A^{\prime} such that $\left|S^{\prime \prime}\right|>\left|S^{\prime}\right|=|S|-1$
* $S^{\prime \prime \prime}=S^{\prime \prime} \cup\left\{A_{1}\right\}$ would be solution to A
* Contradiction since we would have $\left|S^{\prime \prime \prime}\right|>|S|$
- Correctness follows by induction on size of S
- Comparison of greedy algorithm technique with dynamic programming (divide-and-conquer):
- In greedy algorithm we choose what looks like best solution at any given moment and recurse (choice does not depend on solution to subproblems).
- In dynamic programming, solution depends on solution to subproblems.
- Both techniques use optimal solution to subproblems (optimal solution "contains optimal solution for subproblems within it").
- It is often hard to figure out when being greedy works!

Example:

- $0-1$ KNAPSACK PROBLEM: Given n items, with item i being worth $\$ v_{i}$ and having weight w_{i} pounds, fill knapsack of capacity w pounds with maximal value.
- Fractional knapsack problem: As $0-1$ knapsack problem but we can take fractions of items.
- Problems appear very similar, but only fractional knapsack problem can be solved greedily:
* Compute value per pound $\frac{v_{i}}{w_{i}}$ for each item
* Sort items by value per pound.
* Fill knapsack greedily (take objects in order)
\Downarrow
$O(n \log n)$ time, easy to show that solution is optimal.
- Example that 0-1 KNAPSACK PROBLEM cannot be solved greedily:

		$\$ 120$
$\$ 60$	$\$ 100$	\square
10	20	30

Items in value per pound order

Optimal solution for knapsack of size 50

Greedy solution for knapsack of size 50

Note: In FRACTIONAL KNAPSACK PROBLEM we can take $\frac{2}{3}$ of $\$ 120$ object and get $\$ 240$ solution.

- $0-1$ KNAPSACK PROBLEM can be solved in time $O(n \cdot w)$ using dynamic-programming (homework).

