Lecture 13: Augmented Search Trees
 (CLRS 14)

June 5th, 2002

1 Red-Black Trees

- Last time we discussed red-black trees:
- Balanced binary trees-all elements in left (right) subtree of node x are $<x(>x)$.

- Every node is colored Red or Black and we maintained red-blue invariant:
* Root is Black.
* A Red node can only have Black children.
* Every path from the root to a leaf contains the same number of Black nodes.
- We saw how the red-blue invariant guaranteed $O(\log n)$ height.
- We could reestablish the red-blue invariant after an insertion or deletion in $O(\log n)$ time
- $O(\log n)$ node recolorings (no structural changes).
- $O(1)$ rotations:

- Red-black tree also supports Search, Successor, and Predecessor in $O(\log n)$ as in binary search trees.
- We will now discuss how to develop data structures supporting other operations by augmenting red-black tree.

2 Augmented Data Structures

- We want to add an operation $\operatorname{Select}(i)$ to a red-black tree
- We have previously seen how to select the i^{\prime} th element among n elements in $O(n)$ time.
- Can we support it faster if we have the elements stored in a data structure?
- We can of course support the operation in $O(1)$ time if we have the elements sorted in an array but what is we also want to be able to insert and delete elements?
- We augment every node x in red-black tree with a field $\operatorname{size}(x)$ equal to the number of nodes in the subtree rooted in x

$$
-\operatorname{size}(x)=\operatorname{size}(\operatorname{left}(x))+\operatorname{size}(\operatorname{right}(x))+1
$$

Example:

- We can use this field to implement $\operatorname{Select}(i)$:

```
\(\operatorname{Select}(x, i)\)
    \(r=\operatorname{size}(\operatorname{left}(x))+1\)
    IF \(i=r\) THEN Return \(x\)
    IF \(i<r\) THEN Return Select \((\operatorname{left}(x), i)\)
    IF \(i>r\) THEN Return \(\operatorname{Select}(\operatorname{right}(x), i-r)\)
```

Example (Select(17)):

\Downarrow
Since we only follow one root-leaf path the operation takes $O(\log n)$ time.

- Actually, we can also use the field to perform the "opposite" operation in $O(\log n)$ time determining the rank of the element in node x :

```
Rank( \(x\) )
    \(r=\operatorname{size}(\operatorname{left}(x))+1\)
    \(y=x\)
    WHILE \(y \neq\) root of tree DO
        IF \(y=\operatorname{right}(\operatorname{parent}(y))\) THEN
            \(r=r+\operatorname{size}(\operatorname{left}(\operatorname{parent}(y)))+1\)
        \(y=\operatorname{parent}(y)\)
            FI
    OD
    Return \(r\)
```

Example (Rank of element 38):

- We need to maintain the extra field during updates:
- Insert (i) :
* Search down one root-leaf part as usual for position where i should be inserted.
* Increment $\operatorname{size}(x)$ for all nodes x on root-leaf path (these are the only nodes for which the size field change).

Example (Insertion of element 32)

* Rebalancing using Red-black tree rules-recall that we do $O(\log n)$ recolorings and $O(1)$ rotations:
- Color change rules do not affect extra field
- Rotations do affect size extra fields but we can still easily perform a rotation in $O(1)$ time

\Downarrow
Insert performed in $O(\log n)$ time.
- Delete (i) :
* Find element to delete and decrement size field on one root-leaf path (recall that conceptually we always delete a node with at most one child).
* Rebalance using rotations.
\Downarrow
Delete performed in $O(\log n)$ time.
- Note: The key to maintaining the size field during updates is that the field of node x only depend on the field of the children of $x \Rightarrow$
- Insertion or deletion only affect one root-leaf path.
- Rotations can be handled in $O(1)$ time locally.
- In general we can easily prove the following:

A field f in a red-black tree can be maintained in $O(\log n)$ time during updates if $f(x)$ can be computed using only information in x, left (x) and $\operatorname{right}(x)$ (including $f(\operatorname{left}(x))$ and $f(\operatorname{right}(x))$

- When changing field in a node x, f can only change for the $O(\log n)$ ancestors of x on the path to the root.
- Rotations can be handled in $O(1)$ time locally.

3 Interval Tree

- We now consider a slightly more complicated augmentation. We want so solve the following problem:
- Maintain a set of n intervals $\left[i_{1}, i_{2}\right]$ such that one of the intervals containing a query point q (if any) can be found efficiently.

Example: A set of intervals. A query with $q=9$ returns $[6,10]$ or $[8,9]$. A query with $q=23$ returns [15, 23].

- To solve the problem we use the so-called "Interval tree":
- Red-black tree with intervals in nodes
* Key is left endpoint
- Node x augmented with maximal right endpoint in subtree rooted in x

Example: Interval tree on intervals from previous figure:

- We can maintain the interval tree dynamically during insertions and deletions in $O(\log n)$ time
- because augmented field in x only depends on augmented fields in the children of x and the interval stored in x.
$-\max (x)=\max (\operatorname{rightendpoint}(x), \max (\operatorname{left}(x)), \max (\operatorname{right}(x)))$
- We can also answer a query in $O(\log n)$ time:

1. We first check if q is contained in interval stored in root r-if it is we are done.
2. Next we check if q is on left side of left endpoint of interval in r-if it is we recursively search in left subtree (q cannot be contained in any interval in right subtree).
3. If q is to the right of left endpoint of interval in r we have two cases:
(a) If $\max (\operatorname{left}(r))>q$ there must be a segment in left subtree containing q and we recurse left.
(b) If $\max (\operatorname{left}(r))<q$ there is no segment in left subtree containing q and we recurse right.

Case 1	q	Case 3a	q
Case 2		Case 3b	
			q

$$
\begin{aligned}
& \operatorname{QUERY}(x, q) \\
& \quad \text { IF } q \text { contained in } x \text { interval THEN Return } \\
& x \\
& \quad \text { IF } \max (l e f t(x)) \geq q \text { THEN } \\
& \quad \text { Return Query }(l e f t(x), q) \\
& \quad \text { ELSE } \\
& \quad \text { Return Query }(\text { right }(x), q) \\
& \text { FI }
\end{aligned}
$$

\Downarrow
We search down one root-leaf path $\Rightarrow O(\log n)$ time.
Example: Query with $q=23$:

