
Lecture 11: Hashing
(CLRS 11.1-11.3)

June 3rd, 2002

1 Maintaining ordered set

• Last time we started discussing the problem of maintaining an ordered set S under operations

– Search

– Insert

– Delete

– Successor

– Predecessor

• We discussed several implementations

– Array

– Linked list

– Skip lists

• We saw that in skip list all operations have expected running time O(log n)

– Next time we will discuss a data structure (red-black tree) with worst-case O(log n)
running time.

• We can argue that Θ(log n) time is optimal for searching in the decision tree model

Recall decision tree model:

– Binary tree where each node is labeled ai ≤ aj

– Execution corresponds to root-leaf path

– Leaf contains result of computation

– Decision trees correspond to algorithms where we are only allowed to use comparison to
gain knowledge about input.

– Decision tree for search must have n leaves (one for each element)
⇓
Tree must have height Ω(log n)

• In the case of sorting, we saw that we could beat the Ω(n log n) decision tree lower bound
using Indirect Addressing (Radix sort)

– we can also use indirect addressing idea on ordered set problem.

1

2 Direct Addressing

• Store element e in cell e of array (we assume elements are integers)

0 |U| −1e

e

– Insert/Delete/Search in O(1) time

– Predecessor/Successor in O(|U |) time (|U | is the size of ”universe” U)

• Note: We could make predecessor/successor efficient by linking neighbor elements, but
then Insert/Delete becomes O(|U |)

• Problem is that |U | can be huge and often |U | >> n

– 32 bit integers ⇒ |U | = 232

• We can reduce space use using ”hashing”

3 Hashing

• To introduce hashing, we look at direct addressing in a slightly different way :

n elements in set S

0

|U| −1

U

• The main idea is to fix the table size to m = O(n))

– now element e cannot be stored in cell e
⇓
We introduce hash function h(e) : U → {0, 1,m − 1}

0

m −1

e
e2

1

h(e)

h(e)

U 1

2

We call the array the hash table

2

• Problem is of course that several elements can be stored in same cell (m < |U |)
– We call such an event a collision

• We solve this problem using chaining

– Elements mapping to same cell are stored in linked list

– Insert/Delete/Search in O(max chain length)

– Predecessor/Successor in O(m + n) since we have to look in all cells and chains

(Note : We assume we can compute h(e) in O(1) time)

• Note: Predecessor/Successor bounds are very bad (we will not discuss them further in
the following)

– We call a data structure only supporting Insert/Delete/Search a Dictionary

– In a dictionary, order does not really matter

– Lots of applications of dictionaries, e.g.

∗ Symbol table in compilers
∗ IP addresses to machine-name table

• Performance of hashing depends on how well h(e) spreads the elements in the hash table

– Lets make the simple uniform hashing assumption

Any given element is equally likely to hash into any of the m cells

⇓
– On average n

m elements in each chain
⇓

– If we choose m = O(n) we get O(1) bounds (and O(n) space)

• How do we choose a good hashing function?

– Often h(e) = e mod m is used (e mod m is remainder of e divided by m)
Example : m = 12, e = 100 ⇒ h(e) = 4 since 100 = 8 · 12 + 4

– m is often chosen to be a prime number far away from a power of 2

If m = 2p then h(e) = lowest p bits in e which means that the hashing value only
depends on some of the bits in e. If data is not random—not all p-bit patterns equally
likely—then this might be a very bad choice, we would rather have h(e) depend on all
the bits

3

4 Universal Hashing

• Given hash function h, we can always find sets of elements that make hashing perform badly
(n elements that map to same location)

• Like in Quick-sort and skip lists we can make sure our data structure does not perform badly
on a particular input (set of inputs) using randomization

– We choose a hash function randomly (independent of elements) from a carefully defined
set of functions
⇓

– no worst case inputs

– good average case behavior

• We want the set of hash functions to be universal

Let H be a finite collection of functions U → 0, 1,m − 1.
H is called universal if and only if for each x, y ∈ U the number of functions h ∈ H for
which h(x) = h(y) is precisely |H|/m.

– If we choose h randomly from H then the probability of collision between x and y is
|H|/m
|H| = 1

m
⇓

– If m > n, then then expected number of collisions involving element e is < 1
⇓
Insert/Delete/Search in O(1) expected

– Note: The book proves the above more formally and talks about how to find universal
class of hash functions (not hard but requires some number theory, so we skip it)

5 Dynamic perfect hashing

• It turns out that one can even do searches in O(1) worst-case time

– Out of scope of this class

• Idea:

– If set of n keys is static, we could potentially find a perfect hash function h

m=n

n elements

– We need to be able to store description of h compactly and compute h fast.

4

– Lots of research has been done on finding perfect hash functions for a given set of
elements, resulting in O(1) worst-case Search

– The perfect hashing idea can even be made dynamic such that one also gets O(1) In-
sert/Delete expected running time.

– Lots of recent results even improve on this.

5

