Lecture 11: Hashing

(CLRS 11.1-11.3)

June 3rd, 2002

1 Maintaining ordered set

- Last time we started discussing the problem of maintaining an ordered set S under operations
- Search
- Insert
- Delete
- Successor
- Predecessor
- We discussed several implementations
- Array
- Linked list
- Skip lists
- We saw that in skip list all operations have expected running time $O(\log n)$
- Next time we will discuss a data structure (red-black tree) with worst-case $O(\log n)$ running time.
- We can argue that $\Theta(\log n)$ time is optimal for searching in the decision tree model Recall decision tree model:
- Binary tree where each node is labeled $a_{i} \leq a_{j}$
- Execution corresponds to root-leaf path
- Leaf contains result of computation
- Decision trees correspond to algorithms where we are only allowed to use comparison to gain knowledge about input.
- Decision tree for search must have n leaves (one for each element)
\Downarrow
Tree must have height $\Omega(\log n)$
- In the case of sorting, we saw that we could beat the $\Omega(n \log n)$ decision tree lower bound using Indirect Addressing (Radix sort)
- we can also use indirect addressing idea on ordered set problem.

2 Direct Addressing

- Store element e in cell e of array (we assume elements are integers)
0

| | e | | \|U| - | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | e | | | | | |

- Insert/Delete/Search in O(1) time
- Predecessor/Successor in $O(|U|)$ time $(|U|$ is the size of "universe" $U)$
- Note: We could make Predecessor/successor efficient by linking neighbor elements, but then Insert/Delete becomes $O(|U|)$
- Problem is that $|U|$ can be huge and often $|U| \gg n$
-32 bit integers $\Rightarrow|U|=2^{32}$
- We can reduce space use using "hashing"

3 Hashing

- To introduce hashing, we look at direct addressing in a slightly different way :

- The main idea is to fix the table size to $m=O(n)$)
- now element e cannot be stored in cell e
\Downarrow
We introduce hash function $h(e): U \rightarrow\{0,1, \ldots . m-1\}$

We call the array the hash table

- Problem is of course that several elements can be stored in same cell ($m<|U|$)
- We call such an event a collision
- We solve this problem using chaining
- Elements mapping to same cell are stored in linked list

- Insert/Delete/Search in O (max chain length)
- Predecessor/Successor in $O(m+n)$ since we have to look in all cells and chains
(Note: We assume we can compute $h(e)$ in $O(1)$ time)
- Note: Predecessor/Successor bounds are very bad (we will not discuss them further in the following)
- We call a data structure only supporting Insert/Delete/Search a Dictionary
- In a dictionary, order does not really matter
- Lots of applications of dictionaries, e.g.
* Symbol table in compilers
* IP addresses to machine-name table
- Performance of hashing depends on how well $h(e)$ spreads the elements in the hash table
- Lets make the simple uniform hashing assumption

Any given element is equally likely to hash into any of the m cells
\Downarrow

- On average $\frac{n}{m}$ elements in each chain \Downarrow
- If we choose $m=O(n)$ we get $O(1)$ bounds (and $O(n)$ space)
- How do we choose a good hashing function?
- Often $h(e)=e \bmod m$ is used $(e \bmod m$ is remainder of e divided by $m)$

Example: $m=12, e=100 \Rightarrow h(e)=4$ since $100=8 \cdot 12+4$

- m is often chosen to be a prime number far away from a power of 2

If $m=2^{p}$ then $h(e)=$ lowest p bits in e which means that the hashing value only depends on some of the bits in e. If data is not random-not all p-bit patterns equally likely - then this might be a very bad choice, we would rather have $h(e)$ depend on all the bits

4 Universal Hashing

- Given hash function h, we can always find sets of elements that make hashing perform badly (n elements that map to same location)
- Like in Quick-sort and skip lists we can make sure our data structure does not perform badly on a particular input (set of inputs) using randomization
- We choose a hash function randomly (independent of elements) from a carefully defined set of functions
\Downarrow
- no worst case inputs
- good average case behavior
- We want the set of hash functions to be universal

Let H be a finite collection of functions $U \rightarrow 0,1, \ldots . m-1$.
H is called universal if and only if for each $x, y \in U$ the number of functions $h \in H$ for which $h(x)=h(y)$ is precisely $|H| / m$.

- If we choose h randomly from H then the probability of collision between x and y is $\frac{|H| / m}{|H|}=\frac{1}{m}$ \Downarrow
- If $m>n$, then then expected number of collisions involving element e is <1 \Downarrow Insert/Delete/Search in $O(1)$ expected
- Note: The book proves the above more formally and talks about how to find universal class of hash functions (not hard but requires some number theory, so we skip it)

5 Dynamic perfect hashing

- It turns out that one can even do searches in $O(1)$ worst-case time
- Out of scope of this class
- Idea:
- If set of n keys is static, we could potentially find a perfect hash function h

- We need to be able to store description of h compactly and compute h fast.
- Lots of research has been done on finding perfect hash functions for a given set of elements, resulting in $O(1)$ worst-case Search
- The perfect hashing idea can even be made dynamic such that one also gets $O(1)$ InSERT/Delete expected running time.
- Lots of recent results even improve on this.

