Lecture 10: Binary Search Trees. Skip Lists.

(CLRS 10, 12.1-12.3)

May 29th, 2002

1 Maintaining ordered set dynamically

- We want to maintain an ordered set S under operations
- $\operatorname{SEARch}(e):$ Return (pointer to) element e in S (if $e \in S$)
- Insert(e): Insert element e in S
- Delete(e): Delete element e from S
- Successor(e): Return (pointer to) minimal element in S larger than e
- Predecessor (e) : Return (pointer to) maximal element in S smaller than e

1.1 Ordered array implementation

- The first implementation that comes to mind is the ordered array:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 5 & 6 & 7 & 8 & 9 & 11 & 12 & 15 & 17 \\
\hline
\end{array}
$$

- Search can be performed in $O(n)$ time by scanning through array or in $O(\log n)$ time using binary search
- Predecessor/Successor can be performed in $O(\log n)$ time like searching
- Insert/Delete takes $O(n)$ time since we need to expand/compress the array after finding the position of e

1.2 Double linked list implementation

- Unordered list
- Search takes $O(n)$ time since we have to scan the list
- Predecessor/Successor takes $O(n)$ time
- Insert takes $O(1)$ time since we can just insert e at beginning of list
- Delete takes $O(n)$ time since we have to perform a search before spending $O(1)$ time on deletion
- Ordered list
- Search takes $O(n)$ time since we cannot perform binary search
- Predecessor/Successor takes $O(n)$ time
- Insert/Delete takes $O(n)$ time since we have to perform a search to locate the position of insertion/deletion

1.3 Binary search tree implementation

- Binary search naturally leads to definition of binary search tree

- Formal definition of search tree:
- Binary tree with elements in nodes
- If node v holds element e then
* All elements in left subtree $<e$
* All elements in right subtree $>e$

- Search(e) in O (height): Compare with e and recursively search in left or right subtree
- Insert(e) in O (height): Search for e and insert at place where search path terminates (Note: height may increase)
Example: Insertion of 13

- Delete (e) in O (height): Search for node v containing e,

1. v is a leaf: Delete v
2. v is internal node with one child: Delete v and attach child (v) to parent (v)

Example: Delete 7

3. v is internal node with two children:

* exchange e in v with successor e^{\prime} in node v^{\prime} (minimal element in right subtree, found by following left branches as long as possible in right subtree)
* v^{\prime} node can be deleted by case 1 or 2

Example: Delete 12

- Note:
- Running time of all operations depend on height of tree.
- Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.
- In worst case the height can be $O(n)$.

2 Skip lists

- There are several schemes for keeping search trees reasonably balanced and obtain $O(\log n)$ bounds
- Often quite complicated-We will discuss one way (red-black trees) later.
- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
- We will now discuss how randomization can be used to obtain a very simple search structure with expected case performance $O(\log n)$ (independent of data/operations!)
- Idea in a skip list is best illustrated if we try to build a "search tree" on top of double linked list:
- Insert elements $-\infty$ and ∞
- Repeatedly construct double linked list (level S_{i}) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together) \Downarrow
- Number of levels is $O(\log n)$

- Search(e): Start at topmost left element. Repeatedly drop down one level and search forward until max element $\leq e$ is found.

Example: Search for 8

$O(\log n)$ time since we move at most one step to the right at each level.

- Predecessor/Successor also in $O(\log n)$ time
- Insert/Delete seems hard to do in better than $O(n)$ time since we might need to rebuild the entire structure after one of the operations.
- Idea in skip list is to let level S_{i} consist of a randomly generated subset of elements at level S_{i-1}.
- To decide if an element on level S_{i-1} should be on level S_{i}, we flip a coin and include the element if it is head.
\Downarrow
Expected size of S_{1} is $\frac{n}{2}$
Expected size of S_{2} is $\frac{n}{4}$
\vdots
Expected size of S_{i} is $\frac{n}{2^{i}}$
\Downarrow
Expected height is $O(\log n)$
- Operations:
- Search(e) as before.
- Delete(e): Search to find e and delete all occurrences of e.
- Insert(e):
* search to find position of e in S_{0}
* Insert e in S_{0}.
* Repeatedly flip a coin; insert e and continue to next level if it comes up head.
- Running time of all the operations is bounded by search running time
- Down search takes $O($ height $)=O(\log n)$ expected.
- Right search/scan:
* If we scan an element on level i it cannot be on level $i+1$ (because then we would have scanned it there) \Downarrow
* Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head \Downarrow
* We expect to scan 2 elements on level i \Downarrow
* Running time is $O($ height $)=O(\log n)$ expected.
- Note:
- We only really need forward and down pointers.
- Expected space use is $\sum_{i=0}^{\log n} \frac{n}{2^{i}} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=O(n)$.

