Lecture 10: Binary Search Trees. Skip Lists.

(CLRS 10, 12.1-12.3)

May 29th, 2002

1 Maintaining ordered set dynamically

- We want to maintain an ordered set S under operations
 - SEARCH(e): Return (pointer to) element e in S (if $e \in S$)
 - INSERT(e): Insert element e in S
 - Delete element e from S
 - SUCCESSOR(e): Return (pointer to) minimal element in S larger than e
 - PREDECESSOR(e): Return (pointer to) maximal element in S smaller than e

1.1 Ordered array implementation

• The first implementation that comes to mind is the ordered array:

1	3	5	6	7	8	9	11	12	15	17	
---	---	---	---	---	---	---	----	----	----	----	--

- SEARCH can be performed in O(n) time by scanning through array or in $O(\log n)$ time using binary search
- PREDECESSOR/SUCCESSOR can be performed in $O(\log n)$ time like searching
- INSERT/DELETE takes O(n) time since we need to expand/compress the array after finding the position of e

1.2 Double linked list implementation

• Unordered list

- SEARCH takes O(n) time since we have to scan the list
- PREDECESSOR/SUCCESSOR takes O(n) time
- INSERT takes O(1) time since we can just insert e at beginning of list
- DELETE takes O(n) time since we have to perform a search before spending O(1) time on deletion
- Ordered list

- SEARCH takes O(n) time since we cannot perform binary search
- PREDECESSOR/SUCCESSOR takes O(n) time
- INSERT/DELETE takes O(n) time since we have to perform a search to locate the position of insertion/deletion

1.3 Binary search tree implementation

• Binary search naturally leads to definition of binary search tree

- Formal definition of search tree:
 - Binary tree with elements in nodes
 - If node v holds element e then
 - * All elements in left subtree < e
 - * All elements in right subtree > e

- Search(e) in O(height): Compare with e and recursively search in left or right subtree
- Insert(e) in O(height): Search for e and insert at place where search path terminates (Note: height may increase)
 Example: Insertion of 12

Example: Insertion of 13

- Delete(e) in O(height): Search for node v containing e,
 - 1. v is a leaf: Delete v
 - 2. v is internal node with one child: Delete v and attach child(v) to parent(v)

Example: Delete 7

- 3. v is internal node with two children:
 - * exchange e in v with successor e' in node v' (minimal element in right subtree, found by following left branches as long as possible in right subtree)
 - * v' node can be deleted by case 1 or 2

Example: Delete 12

• Note:

- Running time of all operations depend on height of tree.
- Intuitively the tree will be nicely balanced if we do insertion and deletion randomly.
- In worst case the height can be O(n).

2 Skip lists

- There are several schemes for keeping search trees reasonably balanced and obtain $O(\log n)$ bounds
 - Often quite complicated—We will discuss one way (red-black trees) later.
- When we discussed Quick-sort we saw how randomization can lead to good expected running times.
 - We will now discuss how randomization can be used to obtain a very simple search structure with expected case performance $O(\log n)$ (independent of data/operations!)
- Idea in a skip list is best illustrated if we try to build a "search tree" on top of double linked list:
 - Insert elements $-\infty$ and ∞
 - Repeatedly construct double linked list (level S_i) on top of current list (level S_{i-1}) by choosing every second element (and link equal elements together) \Downarrow
 - Number of levels is $O(\log n)$

- Search(e): Start at topmost left element. Repeatedly drop down one level and search forward until max element $\leq e$ is found.

Example: Search for 8

 $O(\log n)$ time since we move at most one step to the right at each level. - *Predecessor/Successor* also in $O(\log n)$ time

- Insert/Delete seems hard to do in better than O(n) time since we might need to rebuild the entire structure after one of the operations.
- Idea in skip list is to let level S_i consist of a randomly generated subset of elements at level S_{i-1} .
 - To decide if an element on level S_{i-1} should be on level S_i , we flip a coin and include the element if it is head.

```
 \downarrow  Expected size of S_1 is \frac{n}{2} Expected size of S_2 is \frac{n}{4} :
:
Expected size of S_i is \frac{n}{2^i} \downarrow Expected height is O(\log n)
```

- Operations:
 - Search(e) as before.
 - Delete(e): Search to find e and delete all occurrences of e.
 - Insert(e):
 - * search to find position of e in S_0
 - * Insert e in S_0 .
 - * Repeatedly flip a coin; insert e and continue to next level if it comes up head.
- Running time of all the operations is bounded by search running time
 - Down search takes $O(height) = O(\log n)$ expected.
 - Right search/scan:
 - * If we scan an element on level i it cannot be on level i + 1 (because then we would have scanned it there)
 - * Expected number of elements we scan on level i is the expected number of times we have to flip a coin to get head \downarrow
 - * We expect to scan 2 elements on level $i \downarrow$
 - * Running time is $O(height) = O(\log n)$ expected.

```
• Note:
```

- We only really need forward and down pointers.
- Expected space use is $\sum_{i=0}^{\log n} \frac{n}{2^i} \le n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = O(n).$