Lecture 8: Linear Time Selection (CLRS 9)

May 27th, 2002

1 Quick-Sort Review

- The last two lectures we have considered Quick-Sort:
- Divide $A[1 \ldots n]$ (using Partition) into subarrays $A^{\prime}=A[1 . . q-1]$ and $A "=A[q+1 \ldots n]$ such that all elements in A " are larger than $A[q]$ and all elements in A^{\prime} are smaller than $A[q]$.
- Recursively sort A^{\prime} and $A^{\prime \prime}$.
- We discussed how split point q produced by Partition only depends on last element in A
- We discussed how randomization can be used to get good expected partition point.
- Analysis:
- Best case $(q=n / 2): T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta(n \log n)$.
- Worst case $(q=1): T(n)=T(1)+T(n-1)+\Theta(n) \Rightarrow T(n)=\Theta\left(n^{2}\right)$.
- Expected case for randomized algorithm: $\Theta(n \log n)$

2 Selection

- If we could find element e such that $\operatorname{rank}(e)=n / 2$ (the median) in $O(n)$ time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
- We could just exchange e with last element in A in beginning of Partition and thus make sure that A is always partition in the middle
- We will consider a more general problem than finding the i 'th element:
- Selection problem
$\operatorname{Select}(i)$ is the i 'th element in the sorted order of elements
- Note: We do not require that we sort to find $\operatorname{Select}(i)$
- Note: $\operatorname{Select}(1)=$ minimum, $\operatorname{Select}(n)=$ maximum, $\operatorname{Select}(n / 2)=$ median
- Special cases of $\operatorname{Select}(i)$
- Minimum or maximum can easily be found in $n-1$ comparisons
* Scan through elements maintaining minimum/maximum
- Second largest/smallest element can be found in $(n-1)+(n-2)=2 n-3$ comparisons
* Find and remove minimum/maximum
* Find minimum/maximum
- Median:
* Using the above idea repeatedly we can find the median in time $\sum_{i=1}^{n / 2}(n-i)=$ $n^{2} / 2-\sum_{i=1}^{n / 2} i=n^{2} / 2-(n / 2 \cdot(n / 2+1)) / 2=\Theta\left(n^{2}\right)$
* We can easily design $\Theta(n \log n)$ algorithm using sorting
- Can we design $O(n)$ time algorithm for general i ?
- If we could partition nicely (which is what we are really trying to do) we could solve the problem
- by partitioning and then recursively looking for the element in one of the partitions:

$$
\begin{aligned}
& \text { SELECT }(A, p, r, i) \\
& \text { IF } p=r \text { THEN RETURN } A[p] \\
& q=\text { PARTITION }(A, p, r) \\
& k=q-p+1 \\
& \text { IF } i \leq k \text { THEN } \\
& \quad \text { RETURN } \operatorname{SELECT}(A, p, q, i) \\
& \text { ELSE } \\
& \text { RETURN } \operatorname{SELECT}(A, q+1, r, i-k) \\
& \text { FI }
\end{aligned}
$$

Select i 'th elements using $\operatorname{Select}(A, 1, n, i)$

- If the partition was perfect $(q=n / 2)$ we have

$$
\begin{aligned}
T(n) & =T(n / 2)+n \\
& =n+n / 2+n / 4+n / 8+\cdots+1 \\
& =\sum_{i=0}^{\log n} \frac{n}{2^{i}} \\
& =n \cdot \sum_{i=0}^{\log n}\left(\frac{1}{2}\right)^{i} \\
& \leq n \cdot \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} \\
& =\Theta(n)
\end{aligned}
$$

Note:

* The trick is that we only recurse on one side.
* In the worst case the algorithm runs in $T(n)=T(n-1)+n=\Theta\left(n^{2}\right)$ time.
* We could use randomization to get good expected partition.
* Even if we just always partition such that a constant fraction $(\alpha<1)$ of the elements are eliminated we get running time $T(n)=T(\alpha n)+n=n \sum_{i=0}^{\log n} \alpha^{i}=\Theta(n)$.
- It turns out that we can modify the algorithm and get $T(n)=\Theta(n)$ in the worst case
- The idea is to find a split element q such that we always eliminate a fraction of the elements:

Select (i)

* Divide n elements into groups of 5
* Select median of each group ($\Rightarrow\left\lceil\frac{n}{5}\right\rceil$ selected elements)
* Use Select recursively to find median q of selected elements
* Partition all elements based on q

* Use Select recursively to find i 'th element
- If $i \leq k$ then use $\operatorname{Select}(i)$ on k elements
- If $i>k$ then use $\operatorname{Select}(i-k)$ on $n-k$ elements
- If n^{\prime} is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n)=\Theta(n)+T\left(\left\lceil\frac{n}{5}\right\rceil\right)+\Theta(n)+T\left(n^{\prime}\right)$
- Estimation of n^{\prime} :
- Consider the following figure of the groups of 5 elements
* An arrow between element e_{1} and e_{2} indicates that $e_{1}>e_{2}$
* The $\left\lceil\frac{n}{5}\right\rceil$ selected elements are drawn solid (q is median of these)
* Elements $>q$ are indicated with box

- Number of elements $>q$ is larger than $3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right) \geq \frac{3 n}{10}-6$
* We get 3 elements from each of $\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil$ columns except possibly the one containing q and the last one.
- Similarly the number of elements $<q$ is larger than $\frac{3 n}{10}-6$ \Downarrow
We recurse on at most $n^{\prime}=n-\left(\frac{3 n}{10}-6\right)=\frac{7}{10} n+6$ elements
- $\operatorname{So} \operatorname{Selection}(i)$ runs in time $T(n)=\Theta(n)+T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7}{10} n+6\right)$
- Solution to $T(n)=n+T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7}{10} n+6\right)$:
- Guess $T(n) \leq c n$
- Induction:

$$
\begin{aligned}
T(n) & =n+T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7}{10} n+6\right) \\
& \leq n+c \cdot\left\lceil\frac{n}{5}\right\rceil+c \cdot\left(\frac{7}{10} n+6\right) \\
& \leq n+c \frac{n}{5}+c+\frac{7}{10} c n+6 c \\
& =\frac{9}{10} c n+n+7 c \\
& \leq c n
\end{aligned}
$$

If $7 c+n \leq \frac{1}{10} c n$ which can be satisfied (e.g. true for $c=20$ if $n>140$)

- Note: It is important that we chose every 5 'th element, not all other choices will work (homework).

