Lecture 8: Linear Time Selection

(CLRS 9)

May 27th, 2002

1 Quick-Sort Review

- The last two lectures we have considered Quick-Sort:
 - Divide A[1...n] (using Partition) into subarrays A' = A[1..q-1] and A'' = A[q+1...n] such that all elements in A' are larger than A[q] and all elements in A' are smaller than A[q].
 - Recursively sort A' and A".
- \bullet We discussed how split point q produced by Partition only depends on last element in A
- We discussed how randomization can be used to get good expected partition point.
- Analysis:
 - Best case (q = n/2): $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$.
 - Worst case (q=1): $T(n) = T(1) + T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$.
 - Expected case for randomized algorithm: $\Theta(n \log n)$

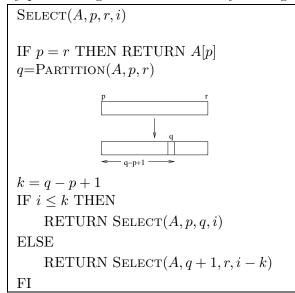
2 Selection

- If we could find element e such that rank(e) = n/2 (the median) in O(n) time we could make quick-sort run in $\Theta(n \log n)$ time worst case.
 - We could just exchange e with last element in A in beginning of Partition and thus make sure that A is always partition in the middle
- We will consider a more general problem than finding the *i*'th element:
 - Selection problem

Select(i) is the i'th element in the sorted order of elements

- Note: We do not require that we sort to find Select(i)
- Note: Select(1)=minimum, Select(n)=maximum, Select(n/2)=median

- Special cases of Select(i)
 - Minimum or maximum can easily be found in n-1 comparisons
 - * Scan through elements maintaining minimum/maximum
 - Second largest/smallest element can be found in (n-1) + (n-2) = 2n-3 comparisons
 - * Find and remove minimum/maximum
 - * Find minimum/maximum
 - Median:
 - * Using the above idea repeatedly we can find the median in time $\sum_{i=1}^{n/2} (n-i) = n^2/2 \sum_{i=1}^{n/2} i = n^2/2 (n/2 \cdot (n/2+1))/2 = \Theta(n^2)$
 - * We can easily design $\Theta(n \log n)$ algorithm using sorting
- Can we design O(n) time algorithm for general i?
- If we could partition nicely (which is what we are really trying to do) we could solve the problem
 - by partitioning and then recursively looking for the element in one of the partitions:



Select i'th elements using Select(A, 1, n, i)

- If the partition was perfect (q = n/2) we have

$$T(n) = T(n/2) + n$$

$$= n + n/2 + n/4 + n/8 + \dots + 1$$

$$= \sum_{i=0}^{\log n} \frac{n}{2^i}$$

$$= n \cdot \sum_{i=0}^{\log n} (\frac{1}{2})^i$$

$$\leq n \cdot \sum_{i=0}^{\infty} (\frac{1}{2})^i$$

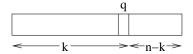
$$= \Theta(n)$$

Note:

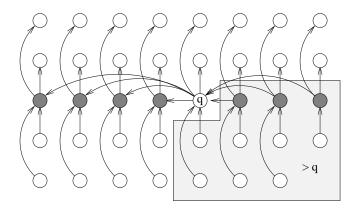
- * The trick is that we only recurse on one side.
- * In the worst case the algorithm runs in $T(n) = T(n-1) + n = \Theta(n^2)$ time.
- * We could use randomization to get good expected partition.
- * Even if we just always partition such that a constant fraction $(\alpha < 1)$ of the elements are eliminated we get running time $T(n) = T(\alpha n) + n = n \sum_{i=0}^{\log n} \alpha^i = \Theta(n)$.
- It turns out that we can modify the algorithm and get $T(n) = \Theta(n)$ in the worst case
 - The idea is to find a split element q such that we always eliminate a fraction of the elements:

Select(i)

- * Divide n elements into groups of 5
- * Select median of each group $(\Rightarrow \lceil \frac{n}{5} \rceil$ selected elements)
- * Use Selected recursively to find median q of selected elements
- * Partition all elements based on q



- * Use Select recursively to find i'th element
 - · If $i \leq k$ then use Select(i) on k elements
 - · If i > k then use Select(i k) on n k elements
- If n' is the maximal number of elements we recurse on in the last step of the algorithm the running time is given by $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + \Theta(n) + T(n')$
- Estimation of n':
 - Consider the following figure of the groups of 5 elements
 - * An arrow between element e_1 and e_2 indicates that $e_1 > e_2$
 - * The $\lceil \frac{n}{5} \rceil$ selected elements are drawn solid (q is median of these)
 - * Elements > q are indicated with box



- Number of elements >q is larger than $3(\frac{1}{2}\lceil\frac{n}{5}\rceil-2)\geq\frac{3n}{10}-6$
 - * We get 3 elements from each of $\frac{1}{2} \lceil \frac{n}{5} \rceil$ columns except possibly the one containing q and the last one.
- Similarly the number of elements < q is larger than $\frac{3n}{10} 6$ \downarrow

We recurse on at most $n' = n - (\frac{3n}{10} - 6) = \frac{7}{10}n + 6$ elements

- So Selection(i) runs in time $T(n) = \Theta(n) + T(\lceil \frac{n}{5} \rceil) + T(\frac{7}{10}n + 6)$
- Solution to $T(n) = n + T(\lceil \frac{n}{5} \rceil) + T(\frac{7}{10}n + 6)$:
 - Guess $T(n) \le cn$
 - Induction:

$$T(n) = n + T(\lceil \frac{n}{5} \rceil) + T(\frac{7}{10}n + 6)$$

$$\leq n + c \cdot \lceil \frac{n}{5} \rceil + c \cdot (\frac{7}{10}n + 6)$$

$$\leq n + c\frac{n}{5} + c + \frac{7}{10}cn + 6c$$

$$= \frac{9}{10}cn + n + 7c$$

$$\leq cn$$

If $7c + n \le \frac{1}{10}cn$ which can be satisfied (e.g. true for c = 20 if n > 140)

 Note: It is important that we chose every 5'th element, not all other choices will work (homework).