
Lecture 7: Sorting Lower Bound and Radix-Sort
(CLRS 8.1-8.3)

May 24th, 2002

1 Comparison model sorting lower bound

• We have seen two Θ(n log n) sorting algorithms: Merge-sort and quick-sort (using median
selection)

• These algorithms only use comparisons to gain information about the input.

• We will prove that such algorithms have to do Ω(n log n) comparisons

• To prove bound, we need formal model

Decision tree

– Binary tree where each internal node is labeled ai ≤ aj (ai is the i’th input element)

– Execution corresponds to root-leaf path

∗ at each internal node comparisons ai ≤ aj is performed and branching made

– Leaf contains result of computation

• Example: Decision tree for sorting 3 elements.

<1,3,2> <3,1,2> <2,3,1> <3,2,1>

<2,1,3><1,2,3>

a  < a 

a  < a 

a  < a 

a  < a 

a  < a 

1 2

2 3 1 3

1 3 2 3

– a leaf contains permutation giving sorted order.

• Note: Decision tree model corresponds to algorithms where

– Only comparisons can be used to gain knowledge about input

– Data movement, control, etc, are ignored

• Worst case number of comparisons performed corresponds to maximal height of tree ⇒ lower
bound on height ⇒ lower bound on sorting
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Theorem: Any decision tree sorting n elements has height Ω(n log n)

Proof:

– Assume elements are the (distinct) numbers 1 through n

– There must be n! leaves (one for each of the n! permutations of n elements)

– Tree of height h has at most 2h leaves

2h ≥ n! ⇒ h ≥ log(n!)
= log(n(n − 1)(n − 2) · · · (2))
= log n + log(n − 1) + log(n − 2) + · · · + log 2

=
n∑

i=2

log i

=
n/2−1∑

i=2

log i +
n∑

i=n/2

log i

≥ 0 +
n∑

i=n/2

log
n

2

=
n

2
· log n

2
= Ω(n log n)

2 Beating sorting lower bound (bucket sort)

• While proving the Ω(n log n) comparison lower bound we assumed that the input were integers
1 through n

• We can easily sort integers 1 through n in O(n) time.

– just move element i to position i in output array

1 2 3 4 5 6 7 8 9 10

4 7 6 2 5 3 10 9 1 8

• What about the more general problem of sorting n elements in range 1....k?

– Move element i to linked list of element i

– Produce sorted output

n sorted elements

i

n elements

k cells
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• Algorithm uses O(n + k) time and space

• Note:

– We did not use comparison at all!

– We beat the Ω(n log n) bound by using values of elements to index into array—Indirect
addressing

• Note:

– Algorithm is stable (Order of equal elements maintained)

– Algorithm is not in-place (more than O(n) space use)—All other sorting algorithms we
have seen have been in-place

• Note:

– Book calls the algorithm (or simplified version of it) counting sort and use bucket sort
for something else

– I call it bucket sort (we put elements in buckets)

3 Radix Sort

• Problem with bucket sort is that k can be very large

– Example: 32 bit integers ⇒ k = 232 ≈ 109 ⇒ space used is 109 · 4 bytes ≈ 4Gbytes!

• Large k result in running time not proportional to n (and other problems like disk swapping)

3.1 MSD Radix-sort

• MSD Radix-sort regards numbers as being made up of digits

– Bucket sort by most significant digit (MSD)

– Recursively sort buckets with more than one element (according to next digit)

• Correctness is straightforward (Induction)

• Example: Sorting numbers < 1000 (k = 1000) using 10 buckets

457

329

839

436

720

355

657

0 :
1:
2:
3:
4:
5:
7:
8:
9:

329

355

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

436

457

329

355

436

454

657

720

839

0 :

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

329, 355

457, 436

657

720

839
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• Problem with MSD radix sort

– We need to keep track of a lot of recursion (buckets)

– Many buckets ⇒ space use

• Advantages of MSD radix sort

– We only need to look at distinguishing prefix (what we need to look at)

3.2 LSD Radix-sort

• LSD Radix-sort:

– Sort by least significant digit (LSD)

– Sort by second least significant digit (using a stable sorting algorithm)
...

– Sort by most significant digit (using a stable sorting algorithm)

• Correctness again by induction

• Example:

720

355

436

457

657

329

839

720

9 :

8 :

7 :

6 :

5 :

4 :

3 :

2 :

1 :

0 :

355

436

329,839

457,657

720

436

457

839

436

720

355

657

329

9 :

8 :

7 :

6 :

5 :

4 :

3 :

2 :

1 :

0 :

329,355

720

657

839

355

436

454

657

720

839

329

8 :

9 :

7 :

6 :

5 :

4 :

3 :

2 :

1 :

0 :

720,329

436,839

355,457,657

329

839

355

457

657

436,457

• Problems with LSD Radix-sort:

– We look at all the numbers in all phases

– Not generally in-place (n < 10)

3.3 In-place Radix-sort

• To get in-place algorithm we simply choose number of buckets equal n in radix sort

– In example, we had n = 7 and 10 buckets

• When doing so we divide the numbers in ranges of n

– In example, we divided in ranges of 10

• If numbers are ≤ R the number of phases i is ni = R ⇒ i = log R
log n

– In example, we had R = 839, 103 > 839 ⇒ 3 phases

⇓
• O(n) space and O(n · log R

log n ) time
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• Note: When is in-place Radix-sort better than 1 · n log n sort (for 32 bit integers)?

– n · 32
log n < n log n ⇒ log2 n > 32 ⇒ n > 2

√
32

– 2
√

32 < 26 = 64

• Note: Recent algorithm by Anderson et al. (1997) combines advantages of MSD and LSD
radix sort

– In-place

– Only look at distinguishing prefix
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