Lecture 7: Sorting Lower Bound and Radix-Sort

(CLRS 8.1-8.3)

May 24th, 2002

1 Comparison model sorting lower bound

- We have seen two $\Theta(n \log n)$ sorting algorithms: Merge-sort and quick-sort (using median selection)
- These algorithms only use comparisons to gain information about the input.
- We will prove that such algorithms have to do $\Omega(n \log n)$ comparisons
- To prove bound, we need formal model

Decision tree

- Binary tree where each internal node is labeled $a_{i} \leq a_{j}$ (a_{i} is the i 'th input element)
- Execution corresponds to root-leaf path
* at each internal node comparisons $a_{i} \leq a_{j}$ is performed and branching made
- Leaf contains result of computation
- Example: Decision tree for sorting 3 elements.

- a leaf contains permutation giving sorted order.
- Note: Decision tree model corresponds to algorithms where
- Only comparisons can be used to gain knowledge about input
- Data movement, control, etc, are ignored
- Worst case number of comparisons performed corresponds to maximal height of tree \Rightarrow lower bound on height \Rightarrow lower bound on sorting

Theorem: Any decision tree sorting n elements has height $\Omega(n \log n)$
Proof:

- Assume elements are the (distinct) numbers 1 through n
- There must be n ! leaves (one for each of the n ! permutations of n elements)
- Tree of height h has at most 2^{h} leaves

$$
\begin{aligned}
2^{h} \geq n!\Rightarrow h & \geq \log (n!) \\
& =\log (n(n-1)(n-2) \cdots(2)) \\
& =\log n+\log (n-1)+\log (n-2)+\cdots+\log 2 \\
& =\sum_{i=2}^{n} \log i \\
& =\sum_{i=2}^{n / 2-1} \log i+\sum_{i=n / 2}^{n} \log i \\
& \geq 0+\sum_{i=n / 2}^{n} \log \frac{n}{2} \\
& =\frac{n}{2} \cdot \log \frac{n}{2} \\
& =\Omega(n \log n)
\end{aligned}
$$

2 Beating sorting lower bound (bucket sort)

- While proving the $\Omega(n \log n)$ comparison lower bound we assumed that the input were integers 1 through n
- We can easily sort integers 1 through n in $O(n)$ time.
- just move element i to position i in output array

- What about the more general problem of sorting n elements in range $1 \ldots . k$?
- Move element i to linked list of element i
- Produce sorted output

- Algorithm uses $O(n+k)$ time and space
- Note:
- We did not use comparison at all!
- We beat the $\Omega(n \log n)$ bound by using values of elements to index into array-Indirect addressing
- Note:
- Algorithm is stable (Order of equal elements maintained)
- Algorithm is not in-place (more than $O(n)$ space use)-All other sorting algorithms we have seen have been in-place
- Note:
- Book calls the algorithm (or simplified version of it) counting sort and use bucket sort for something else
- I call it bucket sort (we put elements in buckets)

3 Radix Sort

- Problem with bucket sort is that k can be very large
- Example: 32 bit integers $\Rightarrow k=2^{32} \approx 10^{9} \Rightarrow$ space used is $10^{9} \cdot 4$ bytes ≈ 4 Gbytes!
- Large k result in running time not proportional to n (and other problems like disk swapping)

3.1 MSD Radix-sort

- MSD Radix-sort regards numbers as being made up of digits
- Bucket sort by most significant digit (MSD)
- Recursively sort buckets with more than one element (according to next digit)
- Correctness is straightforward (Induction)
- Example: Sorting numbers $<1000(k=1000)$ using 10 buckets

- Problem with MSD radix sort
- We need to keep track of a lot of recursion (buckets)
- Many buckets \Rightarrow space use
- Advantages of MSD radix sort
- We only need to look at distinguishing prefix (what we need to look at)

3.2 LSD Radix-sort

- LSD Radix-sort:
- Sort by least significant digit (LSD)
- Sort by second least significant digit (using a stable sorting algorithm) \vdots
- Sort by most significant digit (using a stable sorting algorithm)
- Correctness again by induction
- Example:

- Problems with LSD Radix-sort:
- We look at all the numbers in all phases
- Not generally in-place ($n<10$)

3.3 In-place Radix-sort

- To get in-place algorithm we simply choose number of buckets equal n in radix sort
- In example, we had $n=7$ and 10 buckets
- When doing so we divide the numbers in ranges of n
- In example, we divided in ranges of 10
- If numbers are $\leq R$ the number of phases i is $n^{i}=R \Rightarrow i=\frac{\log R}{\log n}$
- In example, we had $R=839,10^{3}>839 \Rightarrow 3$ phases
\Downarrow
- $O(n)$ space and $O\left(n \cdot \frac{\log R}{\log n}\right)$ time
- Note: When is in-place Radix-sort better than $1 \cdot n \log n$ sort (for 32 bit integers)?
$-n \cdot \frac{32}{\log n}<n \log n \Rightarrow \log ^{2} n>32 \Rightarrow n>2^{\sqrt{32}}$
$-2^{\sqrt{32}}<2^{6}=64$
- Note: Recent algorithm by Anderson et al. (1997) combines advantages of MSD and LSD radix sort
- In-place
- Only look at distinguishing prefix

