
Lecture 5: Master Method and Quick-Sort
(CLRS 4.3-4.4 (read this note instead), 7.1-7.2)

May 22nd, 2002

1 Master Method (recurrences)

• We have solved several recurrences using substitution and iteration.

• Last time we solved several recurrences of the form T (n) = aT (n/b) + nc (T (1) = 1).

– Strassen’s algorithm ⇒ T (n) = 7T (n/2) + n2 (a = 7, b = 2, and c = 2)
– Merge-sort ⇒ T (n) = 2T (n/2) + n (a = 2, b = 2, and c = 1).

• It would be nice to have a general solution to the recurrence T (n) = aT (n/b) + nc.

• We do!

T (n) = aT
(n

b

)
+ nc a ≥ 1, b ≥ 1, c > 0

⇓

T (n) =

Θ(nlogb a) a > bc

Θ(nc logb n) a = bc

Θ(nc) a < bc

Proof (Iteration method)

T (n) = aT
(

n
b

)
+ nc

= nc + a
((n

b

)c + aT
(

n
b2

))

= nc +
(

a
bc

)
nc + a2T

(
n
b2

)

= nc +
(a

bc

)
nc + a2

((
n
b2

)c
+ aT

(
n
b3

))

= nc +
(

a
bc

)
nc +

(
a
bc

)2
nc + a3T

(
n
b3

)

= ...

= nc +
(a

bc

)
nc +

(a
bc

)2
nc +

(a
bc

)3
nc +

(a
bc

)4
nc + ... +

(a
bc

)logb n−1
nc + alogb nT (1)

= nc ∑logb n−1
k=0

(a
bc

)k + alogb n

= nc ∑logb n−1
k=0

(
a
bc

)k + nlogb a

Recall geometric sum
∑n

k=0 xk = xn+1−1
x−1 = Θ(xn)

• a < bc

a < bc ⇔ a
bc < 1 ⇒ ∑logb n−1

k=0

(a
bc

)k ≤ ∑+∞
k=0

(a
bc

)k = 1
1−(a

bc) = Θ(1)

a < bc ⇔ logb a < logb bc = c

T (n) = nc ∑logb n−1
k=0

(a
bc

)k + nlogb a

= nc · Θ(1) + nlogb a

= Θ(nc)

1

• a = bc

a = bc ⇔ a
bc = 1 ⇒ ∑logb n−1

k=0

(a
bc

)k =
∑logb n−1

k=0 1 = Θ(logb n)
a = bc ⇔ logb a = logb bc = c

T (n) =
∑logb n−1

k=0

(
a
bc

)k + nlogb a

= ncΘ(logb n) + nlogb a

= Θ(nc logb n)

• a > bc

a > bc ⇔ a
bc > 1 ⇒ ∑logb n−1

k=0

(
a
bc

)k = Θ
((

a
bc

)logb n
)

= Θ
(

alogb n

(bc)logb n

)
= Θ

(
alogb n

nc

)

T (n) = nc · Θ
(

alogb n

nc

)
+ nlogb a

= Θ(nlogb a) + nlogb a

= Θ(nlogb a)

• Note: Book states and proves the result slightly differently (don’t read it).

1.1 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

• Logarithmic: Θ(log n)

– Recurrence: T (n) = 1 + T (n/2)

– Typical example: Recurse on half the input (and throw half away)

– Variations: T (n) = 1 + T (99n/100)

• Linear: Θ(N)

– Recurrence: T (n) = 1 + T (n − 1)

– Typical example: Single loop

– Variations: T (n) = 1 + 2T (n/2), T (n) = n + T (n/2), T (n) = T (n/5) + T (7n/10 + 6) + n

• Quadratic: Θ(n2)

– Recurrence: T (n) = n + T (n − 1)

– Typical example: Nested loops

• Exponential: Θ(2n)

– Recurrence: T (n) = 2T (n − 1)

2 Quick-sort

• We previously saw how divide-and-conquer can be used to design sorting algorithm—Merge-
sort

– Partition n elements array A into two subarrays of n/2 elements each

– Sort the two subarrays recursively

– Merge the two subarrays

Running time: T (n) = 2T (n/2) + Θ(n) ⇒ T (n) = Θ(n log n)

2

• Another possibility is to used the “opposite” version of divide-and-conquer—Quick-sort

– Partition A[1...n] into subarrays A′ = A[1..q] and A” = A[q+1...n] such that all elements
in A” are larger than all elements in A′.

– Recursively sort A′ and A”.

– (nothing to combine/merge. A already sorted after sorting A′ and A”)

If q = n/2 and we divide in Θ(n) time, we again get the recurrence T (n) = 2T (n/2) + Θ(n)
for the running time ⇒ T (n) = Θ(n log n)

The problem is that it is hard to develop partition algorithm which always divide A in two
halves

• Pseudo code for Quick-sort:

Quicksort(A, p, r)
IF p < r THEN

q=Partition(A, p, r)

Quicksort(A, p, q − 1)

Quicksort(A, q + 1, r)

FI

Sort using Quicksort(A, 1, n)

Partition(A, p, r)
x = A[r]
i = p − 1
FOR j = p TO r − 1 DO

IF A[j] ≤ x THEN

i = i + 1
Exchange A[i] and A[j]

FI

OD
Exchange A[i + 1] and A[r]
RETURN i + 1

• Partition runs in time Θ(n)

3

• Correctness:

– Clear if Partition divides correctly

– Example:

2 7 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

2 8 7 1 3 5 6 4

1 8

2 5 671 3

2 5 6 4781 3

2 5 6 4781 3

2 5 6 4781 3

4 8

i=0, j=1

i=1, j=2

i=1, j=3

i=1, j=4

i=2, j=5

i=3, j=6

i=3, j=7

i=3, j=8

q=4

– Partition can be proved correct (by induction) using the loop invariant:

∗ A[k] ≤ x for p ≤ k ≤ i

∗ A[k] > x for i + 1 ≤ k ≤ j − 1
∗ A[k] = x for k = r

• Running time depends on how well Partition divides A.

– In the example it does reasonably well.

– In the worst case q is always p and the running time becomes T (n) = Θ(n) + T (1) +
T (n − 1) ⇒ T (n) = Θ(n2).

∗ and what is maybe even worse, the worst case is when A is already sorted.

• So why is it called ”quick”-sort? Because it ”often” performs very well—can we theoretically
justify this?

– Even if all the splits are relatively bad, we get Θ(n log n) time:

∗ Example: Split is 9
10n, 1

10n.
T (n) = T (9

10n) + T (1
10n) + n

Solution?
Guess: T (n) ≤ cn log n
Induction

T (n) = T (
9
10

n) + T (
1
10

n) + n

≤ 9cn
10

log(
9n
10

) +
cn

10
log(

n

10
) + n

≤ 9cn
10

log n +
9cn
10

log(
9
10

) +
cn

10
log n +

cn

10
log(

1
10

) + n

≤ cn log n +
9cn
10

log 9 − 9cn
10

log 10 − cn

10
log 10 + n

≤ cn log n − n(c log 10 − 9c
10

log 9 − 1)

T (n) ≤ cn log n if c log 10 − 9c
10 log 9 − 1 > 0 which is definitely true if c > 10

log 10

4

– So, in other words, if just the splits happen at a constant fraction of n we get Θ(n lg n)—
or, its almost never bad!

• Next time we will further justify the good practical performance by looking at average case
running time.

5

