Lecture 5: Master Method and Quick-Sort

(CLRS 4.3-4.4 (read this note instead), 7.1-7.2)

May 22nd, 2002

1 Master Method (recurrences)

- We have solved several recurrences using substitution and iteration.
- Last time we solved several recurrences of the form $T(n)=a T(n / b)+n^{c} \quad(T(1)=1)$.
- Strassen's algorithm $\Rightarrow T(n)=7 T(n / 2)+n^{2}(a=7, b=2$, and $c=2)$
- Merge-sort $\Rightarrow T(n)=2 T(n / 2)+n(a=2, b=2$, and $c=1)$.
- It would be nice to have a general solution to the recurrence $T(n)=a T(n / b)+n^{c}$.
- We do!

$$
\begin{aligned}
& T(n)=a T\left(\frac{n}{b}\right)+n^{c} \\
& \Downarrow \\
& T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right) & a>b^{c} \\
\Theta\left(n^{c} \log _{b} n\right) & a=b^{c} \\
\Theta\left(n^{c}\right) & a<b^{c}\end{cases}
\end{aligned}
$$

Proof (Iteration method)

$$
\begin{aligned}
T(n) & =a T\left(\frac{n}{b}\right)+n^{c} \\
& =n^{c}+a\left(\left(\frac{n}{b}\right)^{c}+a T\left(\frac{n}{b^{2}}\right)\right) \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+a^{2} T\left(\frac{n}{b^{2}}\right)^{c} \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+a^{2}\left(\left(\frac{n}{b^{2}}\right)^{c}+a T\left(\frac{n}{b^{3}}\right)\right) \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+\left(\frac{a}{b^{c}}\right)^{2} n^{c}+a^{3} T\left(\frac{n}{b^{3}}\right) \\
& =\cdots \\
& =n^{c}+\left(\frac{a}{b^{c}}\right) n^{c}+\left(\frac{a}{b^{c}}\right)^{2} n^{c}+\left(\frac{a}{b^{c}}\right)^{3} n^{c}+\left(\frac{a}{b^{c}}\right)^{4} n^{c}+\ldots+\left(\frac{a}{b^{c}}\right)^{\log _{b} n-1} n^{c}+a^{\log _{b} n} T(1) \\
& =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+a^{\log _{b}} n \\
& =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a}
\end{aligned}
$$

Recall geometric sum $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}=\Theta\left(x^{n}\right)$

- $a<b^{c}$

$$
\begin{aligned}
& a<b^{c} \Leftrightarrow \frac{a}{b^{c}}<1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k} \leq \sum_{k=0}^{+\infty}\left(\frac{a}{b^{c}}\right)^{k}=\frac{1}{1-\left(\frac{a}{b^{c}}\right)}=\Theta(1) \\
& \begin{aligned}
a<b^{c} & \Leftrightarrow \log _{b} a<\log _{b} b^{c}=c \\
T(n) & =n^{c} \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a} \\
& =n^{c} \cdot \Theta(1)+n^{\log _{b} a} \\
& =\Theta\left(n^{c}\right)
\end{aligned}
\end{aligned}
$$

- $a=b^{c}$

$$
\begin{aligned}
a=b^{c} & \Leftrightarrow \frac{a}{b^{c}}=1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}=\sum_{k=0}^{\log _{b} n-1} 1=\Theta\left(\log _{b} n\right) \\
a=b^{c} & \Leftrightarrow \log _{b} a=\log _{b} b^{c}=c \\
T(n) & =\sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}+n^{\log _{b} a} \\
& =n^{c} \Theta\left(\log _{b} n\right)+n^{\log _{b} a} \\
& =\Theta\left(n^{c} \log _{b} n\right)
\end{aligned}
$$

- $a>b^{c}$
$a>b^{c} \Leftrightarrow \frac{a}{b^{c}}>1 \Rightarrow \sum_{k=0}^{\log _{b} n-1}\left(\frac{a}{b^{c}}\right)^{k}=\Theta\left(\left(\frac{a}{b^{c}}\right)^{\log _{b} n}\right)=\Theta\left(\frac{a^{\log _{b} n}}{\left(b^{c}\right)^{c \log _{b} n}}\right)=\Theta\left(\frac{a^{\log _{b} n}}{n^{c}}\right)$

$$
\begin{aligned}
T(n) & =n^{c} \cdot \Theta\left(\frac{a^{\log _{b} n}}{n^{c}}\right)+n^{\log _{b} a} \\
& =\Theta\left(n^{\log _{b} a}\right)+n^{\log _{b} a} \\
& =\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

- Note: Book states and proves the result slightly differently (don't read it).

1.1 Other recurrences

Some important/typical bounds on recurrences not covered by master method:

- Logarithmic: $\Theta(\log n)$
- Recurrence: $T(n)=1+T(n / 2)$
- Typical example: Recurse on half the input (and throw half away)
- Variations: $T(n)=1+T(99 n / 100)$
- Linear: $\Theta(N)$
- Recurrence: $T(n)=1+T(n-1)$
- Typical example: Single loop
- Variations: $T(n)=1+2 T(n / 2), T(n)=n+T(n / 2), T(n)=T(n / 5)+T(7 n / 10+6)+n$
- Quadratic: $\Theta\left(n^{2}\right)$
- Recurrence: $T(n)=n+T(n-1)$
- Typical example: Nested loops
- Exponential: $\Theta\left(2^{n}\right)$
- Recurrence: $T(n)=2 T(n-1)$

2 Quick-sort

- We previously saw how divide-and-conquer can be used to design sorting algorithm-Mergesort
- Partition n elements array A into two subarrays of $n / 2$ elements each
- Sort the two subarrays recursively
- Merge the two subarrays

Running time: $T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta(n \log n)$

- Another possibility is to used the "opposite" version of divide-and-conquer-Quick-sort
- Partition $A[1 \ldots n]$ into subarrays $A^{\prime}=A[1 . . q]$ and $A^{\prime \prime}=A[q+1 \ldots n]$ such that all elements in A " are larger than all elements in A^{\prime}.
- Recursively sort A^{\prime} and $A^{\prime \prime}$.
- (nothing to combine/merge. A already sorted after sorting A^{\prime} and $A^{\prime \prime}$)

If $q=n / 2$ and we divide in $\Theta(n)$ time, we again get the recurrence $T(n)=2 T(n / 2)+\Theta(n)$ for the running time $\Rightarrow T(n)=\Theta(n \log n)$
The problem is that it is hard to develop partition algorithm which always divide A in two halves

- Pseudo code for Quick-sort:

Quicksort (A, p, r)	
IF p	$<r$ Then
	q $=$ Partition (A, p, r)
	$\quad \operatorname{Quicksort}(A, p, q-1)$
	Quicksort $(A, q+1, r)$
FI	

Sort using $\operatorname{Quicksort}(A, 1, n)$

```
Partition(A,p,r)
x=A[r]
i=p-1
FOR j = p TO r-1 DO
    IF A[j] \leqx THEN
        i=i+1
        Exchange A[i] and A[j]
    FI
OD
Exchange }A[i+1] and A[r
RETURN i+1
```

- Partition runs in time $\Theta(n)$
- Correctness:
- Clear if Partition divides correctly
- Example:

2	8	7	1	3	5	6	4	$\mathrm{i}=0, \mathrm{j}=1$
2	8	7	1	3	5	6	4	$\mathrm{i}=1, \mathrm{j}=2$
2	8	7	1	3	5	6	4	$\mathrm{i}=1, \mathrm{j}=3$
2	8	7	1	3	5	6	4	$\mathrm{i}=1, \mathrm{j}=4$
2	1	7	8	3	5	6	4	$\mathrm{i}=2, \mathrm{j}=5$
2	1	3	8	7	5	6	4	$\mathrm{i}=3, \mathrm{j}=6$
2	1	3	8	7	5	6	4	$\mathrm{i}=3, \mathrm{j}=7$
2	1	3	8	7	5	6	4	$\mathrm{i}=3, \mathrm{j}=8$
2	1	3	4	7	5	6	8	$\mathrm{q}=4$

- Partition can be proved correct (by induction) using the loop invariant:
* $A[k] \leq x$ for $p \leq k \leq i$
* $A[k]>x$ for $i+1 \leq k \leq j-1$
* $A[k]=x$ for $k=r$
- Running time depends on how well Partition divides A.
- In the example it does reasonably well.
- In the worst case q is always p and the running time becomes $T(n)=\Theta(n)+T(1)+$ $T(n-1) \Rightarrow T(n)=\Theta\left(n^{2}\right)$.
* and what is maybe even worse, the worst case is when A is already sorted.
- So why is it called "quick"-sort? Because it "often" performs very well-can we theoretically justify this?
- Even if all the splits are relatively bad, we get $\Theta(n \log n)$ time:
* Example: Split is $\frac{9}{10} n, \frac{1}{10} n$.
$T(n)=T\left(\frac{9}{10} n\right)+T\left(\frac{1}{10} n\right)+n$
Solution?
Guess: $T(n) \leq c n \log n$
Induction

$$
\begin{aligned}
T(n) & =T\left(\frac{9}{10} n\right)+T\left(\frac{1}{10} n\right)+n \\
& \leq \frac{9 c n}{10} \log \left(\frac{9 n}{10}\right)+\frac{c n}{10} \log \left(\frac{n}{10}\right)+n \\
& \leq \frac{9 c n}{10} \log n+\frac{9 c n}{10} \log \left(\frac{9}{10}\right)+\frac{c n}{10} \log n+\frac{c n}{10} \log \left(\frac{1}{10}\right)+n \\
& \leq c n \log n+\frac{9 c n}{10} \log 9-\frac{9 c n}{10} \log 10-\frac{c n}{10} \log 10+n \\
& \leq c n \log n-n\left(c \log 10-\frac{9 c}{10} \log 9-1\right)
\end{aligned}
$$

$T(n) \leq c n \log n$ if $c \log 10-\frac{9 c}{10} \log 9-1>0$ which is definitely true if $c>\frac{10}{\log 10}$

- So, in other words, if just the splits happen at a constant fraction of n we get $\Theta(n \lg n)$ or, its almost never bad!
- Next time we will further justify the good practical performance by looking at average case running time.

