Lecture 4: Recurrences and Strassen’s Algorithm
(CLRS 4.1-4.2, 28.14+28.2)

May 21st, 2002

1 Summation review

e Last time we computed a number of sum’s using;:

— Splitting and bounding terms ideas
— Induction (!)

Arithmetic sum:
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2 Recurrences

e Last time we started discussing how to solve recurrences.
— Recurrences often needs to be solved in order to analyze divide-and-conquer algorithms.
e We saw how to solve the recurrence T'(n) = 27'(n/2) + n using the substitution method

— Idea in substitution method is to make good guess and prove by induction.

2.1 Substitution method
e Solution to T'(n) = 2T (n/2) 4+ n using substitution

— Guess T'(n) < cnlogn for some constant ¢ (that is, T'(n) = O(nlogn))
— Proof:

%+ Basis: Function constant for small constant n



* Induction:
Assume holds for n/2: T'(n/2) < c§ log
Show holds for n: T'(n) < cnlogn
Proof:
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e The hard part of the substitution method is often to make a good guess.

2.2 Iteration/recursion-tree method

e In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

— Example: Solve T'(n) = 8T (n/2) +n? (T(1) =1)
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— How long does it continue? i times where 2+ =1 =i =logn
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— What is the last term? 8'7'(1) = 8l°gn
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— Now Zfig_l 2k is a geometric sum so we have Efig_l 2k = @(2lsm—1) = O(n)
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e The book discuss a different way of looking at the iteration method: the recursion-tree method

— we draw out the recursion tree with cost of single call in each node—running time is
sum of costs in all nodes (like we discussed when analyzing merge-sort).
— really the same as iterating.

— Example: T'(n) = 8T(n/2) +n? (T(1) =1)
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3 Matrix Multiplication

e Let X and Y be n x n matrices
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e We want to compute Z = X - Y

= Zij = et Xik - Yij

e Naive method uses = n? - n = O(n?) operations

e Divide-and-conquer solution:
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}

— The above naturally leads to divide-and-conquer solution:

x Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.

« Compute Z by combining results (doing 4 matrix additions).

— Lets assume n = 2¢ for some constant ¢ and let A, B, C and D be n/2 x n/2 matrices
* Running time of algorithm is T'(n) = 8T(n/2) + O(n?) = T(n) = O(n?)

— But we already discussed a (simpler/naive) O(n?) algorithm! Can we do better?

3.1 Strassen’s Algorithm

e Strassen observed the following:
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— Lets test that S¢ + Sy isreally C-E+ D -G
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e This leads to a divide-and-conquer algorithm with running time 7'(n) = 7T(n/2) + ©(n?)

— We only need to perform 7 multiplications recursively.

— Division/Combination can still be performed in ©(n?) time.

e Lets solve the recurrence using the iteration method

T(n) = 7T(n/2)+ n?
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— Now we have the following:
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So the solution is T'(n) = O(n!87) = O(n28!)

e Note:

We are ’hiding’ a much bigger constant in ©() than before.
— Currently best known bound is O(n?376) (another method).

Lower bound is (trivially) Q(n?).

Book present Strassen’s algorithm in a somewhat strange way.



