Lecture 4: Recurrences and Strassen's Algorithm

(CLRS 4.1-4.2, 28.1+28.2)

May 21st, 2002

1 Summation review

- Last time we computed a number of sum's using:
- Splitting and bounding terms ideas
- Induction (!)
- Arithmetic sum:
$-\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)$
$-\sum_{k=1}^{n} k^{d}=\Theta\left(n^{d+1}\right)$
- Geometric sum:

$$
-\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}=\Theta\left(x^{n}\right)
$$

- Harmonic sum:

$$
-\sum_{i=1}^{n} \frac{1}{k}=\Theta(\log n)
$$

2 Recurrences

- Last time we started discussing how to solve recurrences.
- Recurrences often needs to be solved in order to analyze divide-and-conquer algorithms.
- We saw how to solve the recurrence $T(n)=2 T(n / 2)+n$ using the substitution method
- Idea in substitution method is to make good guess and prove by induction.

2.1 Substitution method

- Solution to $T(n)=2 T(n / 2)+n$ using substitution
- Guess $T(n) \leq c n \log n$ for some constant c (that is, $T(n)=O(n \log n))$
- Proof:
* Basis: Function constant for small constant n
* Induction:

Assume holds for $n / 2: T(n / 2) \leq c \frac{n}{2} \log \frac{n}{2}$
Show holds for $n: T(n) \leq c n \log n$
Proof:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2\left(c \frac{n}{2} \log \frac{n}{2}\right)+n \\
& =c n \log \frac{n}{2}+n \\
& =c n \log n-c n \log 2+n \\
& =c n \log n-c n+n
\end{aligned}
$$

So ok if $c \geq 1$

- The hard part of the substitution method is often to make a good guess.

2.2 Iteration/recursion-tree method

- In the iteration method we iteratively "unfold" the recurrence until we "see the pattern".

The iteration method does not require making a good guess like the substitution method (but it is often more involved than using induction).

- Example: Solve $T(n)=8 T(n / 2)+n^{2} \quad(T(1)=1)$

$$
\begin{aligned}
T(n) & =n^{2}+8 T(n / 2) \\
& =n^{2}+8\left(8 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& \left.=n^{2}+8^{2} T\left(\frac{n}{2^{2}}\right)+8\left(\frac{n^{2}}{4}\right)\right) \\
& =n^{2}+2 n^{2}+8^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+2 n^{2}+8^{2}\left(8 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& \left.=n^{2}+2 n^{2}+8^{3} T\left(\frac{n}{2^{3}}\right)+8^{2}\left(\frac{n^{2}}{4^{2}}\right)\right) \\
& =n^{2}+2 n^{2}+2^{2} n^{2}+8^{3} T\left(\frac{n}{2^{3}}\right) \\
& =\cdots \\
& =n^{2}+2 n^{2}+2^{2} n^{2}+2^{3} n^{2}+2^{4} n^{2}+\ldots
\end{aligned}
$$

- How long does it continue? i times where $\frac{n}{2^{i}}=1 \Rightarrow i=\log n$
- What is the last term? $8^{i} T(1)=8^{\log n}$

$$
\begin{aligned}
T(n) & =n^{2}+2 n^{2}+2^{2} n^{2}+2^{3} n^{2}+2^{4} n^{2}+\ldots+2^{\log n-1} n^{2}+8^{\log n} \\
& =\sum_{k=0}^{\log n-1} 2^{k} n^{2}+8^{\log n} \\
& =n^{2} \sum_{k=0}^{\log n-1} 2^{k}+\left(2^{3}\right)^{\log n}
\end{aligned}
$$

- Now $\sum_{k=0}^{\log n-1} 2^{k}$ is a geometric sum so we have $\sum_{k=0}^{\log n-1} 2^{k}=\Theta\left(2^{\log n-1}\right)=\Theta(n)$ $-\left(2^{3}\right)^{\log n}=\left(2^{\log n}\right)^{3}=n^{3}$

$$
\begin{aligned}
T(n) & =n^{2} \cdot \Theta(n)+n^{3} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

- The book discuss a different way of looking at the iteration method: the recursion-tree method
- we draw out the recursion tree with cost of single call in each node - running time is sum of costs in all nodes (like we discussed when analyzing merge-sort).
- really the same as iterating.
- Example: $T(n)=8 T(n / 2)+n^{2} \quad(T(1)=1)$

1) $\underset{\mathrm{T}(\mathrm{n})}{\bullet}$

$\log \mathrm{n})$

$$
T(n)=n^{2}+2 n^{2}+2^{2} n^{2}+2^{3} n^{2}+2^{4} n^{2}+\ldots+2^{\log n-1} n^{2}+8^{\log n}
$$

3 Matrix Multiplication

- Let X and Y be $n \times n$ matrices

$$
X=\left\{\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{1 n} \\
x_{31} & x_{32} & \cdots & x_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right\}
$$

- We want to compute $Z=X \cdot Y$

$$
-z_{i j}=\sum_{k=1}^{n} X_{i k} \cdot Y_{k j}
$$

- Naive method uses $\Rightarrow n^{2} \cdot n=\Theta\left(n^{3}\right)$ operations
- Divide-and-conquer solution:

$$
Z=\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{cc}
(A \cdot E+B \cdot G) & (A \cdot F+B \cdot H) \\
(C \cdot E+D \cdot G) & (C \cdot F+D \cdot H)
\end{array}\right\}
$$

- The above naturally leads to divide-and-conquer solution:
* Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.
* Compute Z by combining results (doing 4 matrix additions).
- Lets assume $n=2^{c}$ for some constant c and let A, B, C and D be $n / 2 \times n / 2$ matrices
* Running time of algorithm is $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)$
- But we already discussed a (simpler/naive) $O\left(n^{3}\right)$ algorithm! Can we do better?

3.1 Strassen's Algorithm

- Strassen observed the following:
$Z=\left\{\begin{array}{ll}A & B \\ C & D\end{array}\right\} \cdot\left\{\begin{array}{ll}E & F \\ G & H\end{array}\right\}=\left\{\begin{array}{cc}\left(S_{1}+S_{2}-S_{4}+S_{6}\right) & \left(S_{4}+S_{5}\right) \\ \left(S_{6}+S_{7}\right) & \left(S_{2}+S_{3}+S_{5}-S_{7}\right)\end{array}\right\}$
where

$$
\begin{aligned}
& S_{1}=(B-D) \cdot(G+H) \\
& S_{2}=(A+D) \cdot(E+H) \\
& S_{3}=(A-C) \cdot(E+F) \\
& S_{4}=(A+B) \cdot H \\
& S_{5}=A \cdot(F-H) \\
& S_{6}=D \cdot(G-E) \\
& S_{7}=(C+D) \cdot E
\end{aligned}
$$

- Lets test that $S_{6}+S_{7}$ is really $C \cdot E+D \cdot G$

$$
\begin{aligned}
S_{6}+S_{7} & =D \cdot(G-E)+(C+D) \cdot E \\
& =D G-D E+C E+D E \\
& =D G+C E
\end{aligned}
$$

- This leads to a divide-and-conquer algorithm with running time $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
- We only need to perform 7 multiplications recursively.
- Division/Combination can still be performed in $\Theta\left(n^{2}\right)$ time.
- Lets solve the recurrence using the iteration method

$$
\begin{aligned}
T(n) & =7 T(n / 2)+n^{2} \\
& =n^{2}+7\left(7 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2}\left(7 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} \cdot n^{2}+7^{3} T\left(\frac{n}{2^{3}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} n^{2}+\left(\frac{7}{2^{2}}\right)^{3} n^{2} \ldots+\left(\frac{7}{2^{2}}\right)^{\log n-1} n^{2}+7^{\log n} \\
& =\sum_{i=0}^{\log n-1}\left(\frac{7}{2^{2}}\right)^{i} n^{2}+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\left(\frac{7}{2^{2}}\right)^{\log n-1}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{\left(2^{2}\right)^{\log n}}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{n^{2}}\right)+7^{\log n} \\
& =\Theta\left(7^{\log n}\right)
\end{aligned}
$$

- Now we have the following:

$$
\begin{aligned}
7^{\log n} & =7^{\frac{\log _{7} n}{\log _{7} 2}} \\
& =\left(7^{\log _{7} n}\right)^{\left(1 / \log _{7} 2\right)} \\
& =n^{\left(1 / \log _{7} 2\right)} \\
& =n^{\frac{\log _{2} 7}{\log _{2} 2}} \\
& =n^{\log 7}
\end{aligned}
$$

- Or in general: $a^{\log _{k} n}=n^{\log _{k} a}$

So the solution is $T(n)=\Theta\left(n^{\log 7}\right)=\Theta\left(n^{2.81 \ldots}\right)$

- Note:
- We are 'hiding' a much bigger constant in $\Theta()$ than before.
- Currently best known bound is $O\left(n^{2.376 . .}\right)$ (another method).
- Lower bound is (trivially) $\Omega\left(n^{2}\right)$.
- Book present Strassen's algorithm in a somewhat strange way.

