
Lecture 4: Recurrences and Strassen’s Algorithm
(CLRS 4.1-4.2, 28.1+28.2)

May 21st, 2002

1 Summation review

• Last time we computed a number of sum’s using:

– Splitting and bounding terms ideas

– Induction (!)

• Arithmetic sum:

–
∑n

k=1 k = n(n+1)
2 = Θ(n2)

–
∑n

k=1 kd = Θ(nd+1)

• Geometric sum:

–
∑n

k=0 xk = xn+1−1
x−1 = Θ(xn)

• Harmonic sum:

–
∑n

i=1
1
k = Θ(log n)

2 Recurrences

• Last time we started discussing how to solve recurrences.

– Recurrences often needs to be solved in order to analyze divide-and-conquer algorithms.

• We saw how to solve the recurrence T (n) = 2T (n/2) + n using the substitution method

– Idea in substitution method is to make good guess and prove by induction.

2.1 Substitution method

• Solution to T (n) = 2T (n/2) + n using substitution

– Guess T (n) ≤ cn log n for some constant c (that is, T (n) = O(n log n))

– Proof:

∗ Basis: Function constant for small constant n

1

∗ Induction:
Assume holds for n/2: T (n/2) ≤ cn

2 log n
2

Show holds for n: T (n) ≤ cn log n
Proof:

T (n) = 2T (n/2) + n

≤ 2(c
n

2
log

n

2
) + n

= cn log
n

2
+ n

= cn log n − cn log 2 + n

= cn log n − cn + n

So ok if c ≥ 1

• The hard part of the substitution method is often to make a good guess.

2.2 Iteration/recursion-tree method

• In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

– Example: Solve T (n) = 8T (n/2) + n2 (T (1) = 1)

T (n) = n2 + 8T (n/2)

= n2 + 8(8T (
n

22
) + (

n

2
)2)

= n2 + 82T (
n

22
) + 8(

n2

4
))

= n2 + 2n2 + 82T (
n

22
)

= n2 + 2n2 + 82(8T (
n

23
) + (

n

22
)2)

= n2 + 2n2 + 83T (
n

23
) + 82(

n2

42
))

= n2 + 2n2 + 22n2 + 83T (
n

23
)

= . . .

= n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . .

– How long does it continue? i times where n
2i = 1 ⇒ i = log n

– What is the last term? 8iT (1) = 8log n

T (n) = n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . . + 2log n−1n2 + 8log n

=
log n−1∑

k=0

2kn2 + 8log n

= n2
log n−1∑

k=0

2k + (23)log n

2

– Now
∑log n−1

k=0 2k is a geometric sum so we have
∑log n−1

k=0 2k = Θ(2log n−1) = Θ(n)

– (23)log n = (2log n)3 = n3

T (n) = n2 · Θ(n) + n3

= Θ(n3)

• The book discuss a different way of looking at the iteration method: the recursion-tree method

– we draw out the recursion tree with cost of single call in each node—running time is
sum of costs in all nodes (like we discussed when analyzing merge-sort).

– really the same as iterating.

– Example: T (n) = 8T (n/2) + n2 (T (1) = 1)

(n/2)2 (n/2)2

(n/4)2 (n/4)2

n2 n2

(n/2)2 (n/2)2

T(n/4)

n2

T(n/4)

T(n)
1)

T(n/2) T(n/2)

n22)

T(1) T(1) T(1)

8(n/2) = 2n

8 (n/4) = 2 n

2 2

2 2 22

log n
8 T(1)

+

+

+

+

3)

log n)

T (n) = n2 + 2n2 + 22n2 + 23n2 + 24n2 + . . . + 2log n−1n2 + 8log n

3

3 Matrix Multiplication

• Let X and Y be n × n matrices

X =




x11 x12 · · · x1n

x21 x22 · · · x1n

x31 x32 · · · x1n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn




• We want to compute Z = X · Y
– zij =

∑n
k=1 Xik · Ykj

• Naive method uses ⇒ n2 · n = Θ(n3) operations

• Divide-and-conquer solution:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(A · E + B · G) (A · F + B · H)
(C · E + D · G) (C · F + D · H)

}

– The above naturally leads to divide-and-conquer solution:

∗ Divide X and Y into 8 sub-matrices A, B, C, and D.
∗ Do 8 matrix multiplications recursively.
∗ Compute Z by combining results (doing 4 matrix additions).

– Lets assume n = 2c for some constant c and let A, B, C and D be n/2 × n/2 matrices

∗ Running time of algorithm is T (n) = 8T (n/2) + Θ(n2) ⇒ T (n) = Θ(n3)

– But we already discussed a (simpler/naive) O(n3) algorithm! Can we do better?

3.1 Strassen’s Algorithm

• Strassen observed the following:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(S1 + S2 − S4 + S6) (S4 + S5)

(S6 + S7) (S2 + S3 + S5 − S7)

}

where

S1 = (B − D) · (G + H)
S2 = (A + D) · (E + H)
S3 = (A − C) · (E + F)
S4 = (A + B) · H
S5 = A · (F − H)
S6 = D · (G − E)
S7 = (C + D) · E

– Lets test that S6 + S7 is really C · E + D · G
S6 + S7 = D · (G − E) + (C + D) · E

= DG − DE + CE + DE

= DG + CE

4

• This leads to a divide-and-conquer algorithm with running time T (n) = 7T (n/2) + Θ(n2)

– We only need to perform 7 multiplications recursively.

– Division/Combination can still be performed in Θ(n2) time.

• Lets solve the recurrence using the iteration method

T (n) = 7T (n/2) + n2

= n2 + 7(7T (
n

22
) + (

n

2
)2)

= n2 + (
7
22

)n2 + 72T (
n

22
)

= n2 + (
7
22

)n2 + 72(7T (
n

23
) + (

n

22
)2)

= n2 + (
7
22

)n2 + (
7
22

)2 · n2 + 73T (
n

23
)

= n2 + (
7
22

)n2 + (
7
22

)2n2 + (
7
22

)3n2.... + (
7
22

)log n−1n2 + 7log n

=
log n−1∑

i=0

(
7
22

)in2 + 7log n

= n2 · Θ((
7
22

)log n−1) + 7log n

= n2 · Θ(
7log n

(22)log n
) + 7log n

= n2 · Θ(
7log n

n2
) + 7log n

= Θ(7log n)

– Now we have the following:

7log n = 7
log7 n

log7 2

= (7log7 n)(1/ log7 2)

= n(1/ log7 2)

= n
log2 7

log2 2

= nlog 7

– Or in general: alogk n = nlogk a

So the solution is T (n) = Θ(nlog 7) = Θ(n2.81...)

• Note:

– We are ’hiding’ a much bigger constant in Θ() than before.

– Currently best known bound is O(n2.376..) (another method).

– Lower bound is (trivially) Ω(n2).

– Book present Strassen’s algorithm in a somewhat strange way.

5

