Lecture 4: Recurrences and Strassen’s Algorithm
(CLRS 4.1-4.2, 28.14+28.2)

May 21st, 2002

1 Summation review

e Last time we computed a number of sum’s using;:

— Splitting and bounding terms ideas
— Induction (!)

Arithmetic sum:

— Y k=0t — g(n2)
— Y kT = 0(ndt)

Geometric sum:

+1_
— Yhopab = =e@n)

Harmonic sum:

- D e % = O(logn)

2 Recurrences

e Last time we started discussing how to solve recurrences.
— Recurrences often needs to be solved in order to analyze divide-and-conquer algorithms.
e We saw how to solve the recurrence T'(n) = 27'(n/2) + n using the substitution method

— Idea in substitution method is to make good guess and prove by induction.

2.1 Substitution method
e Solution to T'(n) = 2T (n/2) 4+ n using substitution

— Guess T'(n) < cnlogn for some constant ¢ (that is, T'(n) = O(nlogn))
— Proof:

%+ Basis: Function constant for small constant n

* Induction:
Assume holds for n/2: T'(n/2) < c§ log
Show holds for n: T'(n) < cnlogn
Proof:

T(n) = 2T(n/2)+n

2(03 log g) +n

n
cnlog§ +n

IN

cnlogn —cenlog2 +n

= cnlogn—cn+n

Sookife>1

e The hard part of the substitution method is often to make a good guess.

2.2 Iteration/recursion-tree method

e In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

— Example: Solve T'(n) = 8T (n/2) +n? (T(1) =1)

T(n) = n*>+8T(n/2)

= W’ +8(8T(5) + (5))
2
o 9y M n
n
::M+%h§ﬂ§)
2 2 2 n 2
= n°+2n°+8 (8T(§)+(2—2))
2
2 2 3 1 2,1
n
:nhmﬂm%Mﬁﬂﬁ)

= n2rom?+22n2 232 ot 1.

— How long does it continue? i times where 2+ =1 =i =logn

21
— What is the last term? 8'7'(1) = 8l°gn

T(n) = n?+2n%+ 2%+ 2°n? + 202 + .. 4 208"~ 1p2 4 glogn
logn—1
— Z 2kn2+810gn
k=0
logn—1

_ n2 Z 2k+(23)logn
k=0

— Now Zfig_l 2k is a geometric sum so we have Efig_l 2k = @(2lsm—1) = O(n)
_ (23)10gn — (210gn)3 — n3

T(n) = n*-0(n)+n?
0(n?)

e The book discuss a different way of looking at the iteration method: the recursion-tree method

— we draw out the recursion tree with cost of single call in each node—running time is
sum of costs in all nodes (like we discussed when analyzing merge-sort).
— really the same as iterating.

— Example: T'(n) = 8T(n/2) +n? (T(1) =1)

n °® 2) ¥ 3
T()

(n/2)?

T(n/2) """""""""""""""" T(n/2)

log n)

2

+

(n/2)2 8(n/2)2= 2n?

+

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr F(/4p= 22

+

e o ° g%9 (g
TULY THLY ++vovereresesees s s s T(D

T(n) =n?+2n% +22n2 + 23n2 42102 ... 4 2loen—lp2 4 glogn

3 Matrix Multiplication

e Let X and Y be n x n matrices

T11 T12 Tin
To1 T2 T1n
X =4 w31 32 Tin
Tnl ITn2 Tnn

e We want to compute Z = X - Y

= Zij = et Xik - Yij

e Naive method uses = n? - n = O(n?) operations

e Divide-and-conquer solution:

Z_{A B}{EF

C D G H

-1

(A-E+B-G)
(C-E+D-G)

(A-F+B-H)
(C-F+D-H)

}

— The above naturally leads to divide-and-conquer solution:

x Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.

« Compute Z by combining results (doing 4 matrix additions).

— Lets assume n = 2¢ for some constant ¢ and let A, B, C and D be n/2 x n/2 matrices
* Running time of algorithm is T'(n) = 8T(n/2) + O(n?) = T(n) = O(n?)

— But we already discussed a (simpler/naive) O(n?) algorithm! Can we do better?

3.1 Strassen’s Algorithm

e Strassen observed the following:

A B
C D

E F
G H

|

where

RE

{

S1
So
S3
Sy
S5
Se
S7

(S1+ S2 — Sy + S6)

(Sa+ S5)

}

(56+S7) (52-1-534-55—57)
(B—D)-(G+H)
(A+D)-(E+ H)
(A-C)-(E+F)

(A+B)-H

A-(F - H)

D-(G-E)

(C+D) E

— Lets test that S¢ + Sy isreally C-E+ D -G

Sg + S7

D-(G-E)+(C+D)-E
DG—-DE+CE+ DE
DG +CE

e This leads to a divide-and-conquer algorithm with running time 7'(n) = 7T(n/2) + ©(n?)

— We only need to perform 7 multiplications recursively.

— Division/Combination can still be performed in ©(n?) time.

e Lets solve the recurrence using the iteration method

T(n) = 7T(n/2)+ n?

n n
= W T () + (5))
7 n
= n?+ (2—2)n2 - 72T(2—2)
7 n n
= n’+ (ﬁ)’n2 + 72(7T(§) + (?)2)
7 7 n
= n?+ (2—2)n2 + (?)2 -n? 4 73T(§)
7 7 7 7
— n?+(2_2)n2+(§)2n2+(§)3n2””+(2_2)logn—1n2+7logn
logn—1
7.
— Z (§)1n2+710gn
1=0
7
_ ??,2 . @((?)logn—l) + 710gn
7logn
_ 2 1
= O) + T
710gn
= 02 O(—) 4 7oE"
n
— @(710gn)
— Now we have the following:
T S
7 = Tloer
— (7log7n)(1/10g72)
— n(1/10g72)
logo 7
— nlogQQ
— nlog?
— Or in general: @l°8x™ = plogr e

So the solution is T'(n) = O(n!87) = O(n28!)

e Note:

We are ’hiding’ a much bigger constant in ©() than before.
— Currently best known bound is O(n?376) (another method).

Lower bound is (trivially) Q(n?).

Book present Strassen’s algorithm in a somewhat strange way.

