
Lecture 3: Summations and Recurrences
(CLRS A, 4.1)

May 20th, 2002

1 Review

• Asymptotic growth: O,Ω,Θ

– We often think of f(n) = O(g(n)) as corresponding to f(n) ≤ g(n).

– Similarly, f(n) = Θ(g(n)) corresponds to f(n) = g(n)

– Similarly, f(n) = Ω(g(n)) corresponds to f(n) ≥ g(n)

– One can also define o and ω

∗ f(n) = o(g(n)) corresponds to f(n) < g(n)
∗ f(n) = ω(g(n)) corresponds to f(n) > g(n)

• Growth rate of standard functions:

– polynomials versus exponentials: limn→∞ nb

an = 0, for any a > 1, b > 0.

– polynomials versus polylogarithmics: limn→∞ loga n
nb = 0, for any a, b > 0.

1.1 Log’s

• Base 2 logarithm comes up all the time (from now on we will always mean log2 n when we
write log n).

– Number of times we can divide n by 2 to get to 1 or less.

– Number of bits in binary representation of n.

– Inverse function of 2n = 2 · 2 · 2 · · · 2 (n times).

– Way of doing multiplication by addition: log(ab) = log(a) + log(b)

• Note:

– loga n = logb n
logb a

– log n <<
√

n << n

1

2 Summations

When analyzing insertion-sort we used∑n
k=1 k = 1+2+3+· · ·+n = n(n+1)

2 = Θ(n2) (Arithmetic series)

How can we prove this?

• Asymptotic:

Often good estimates can be found by using the largest value to bound others:∑n
k=1 k ≤ ∑n

k=1 n = n · ∑n
k=1 1 = n2 = O(n2)

Another trick: Splitting the sum:∑n
k=1 k =

∑n/2−1
k=1 k +

∑n
k= n

2
k ≥ ∑n/2−1

k=1 0 +
∑n

k= n
2

k ≥ (n
2)2 = Ω(n2).

⇓∑n
k=1 k = Θ(n2)

• Precise (proof by induction!):

– Basis: n = 1 ⇒ ∑1
k=1 = 1

n(n+1)
2 = 1·2

2 = 1

– Induction:
Assume it holds for n:

∑n
k=1 k = n(n+1)

2

Show it holds for n + 1:
∑n+1

k=1 k = (n+1)(n+2)
2 = 1

2n2 + 3
2n + 1

Proof:

n+1∑
k=1

k =
n∑

k=1

k + (n + 1)

=
n(n + 1)

2
+ (n + 1)

=
1
2
n2 +

1
2
n + n + 1

=
1
2
n2 +

3
2
n + 1

In general we can prove that
∑n

k=1 kd = Θ(nd+1)

2

Another important sum:
∑n

k=0 xk = 1+x+x2 + · · ·xn = xn+1−1
x−1 = O(xn) (Geometric series)

• Proof by induction:

– Basis: n = 1 ⇒ ∑1
k=0 xk = 1 + x

xn+1−1
x−1 = x2−1

x−1 = (x+1)(x−1)
(x−1) = x + 1

– Induction:
Assume holds for n:

∑n
k=0 xk = xn+1−1

x−1

Show it holds for n + 1:
∑n+1

k=0 xk = xn+2−1
x−1

Proof:

n+1∑
k=0

xk =
n∑

k=0

xk + xn+1

=
xn+1 − 1

x − 1
+ xn+1

=
xn+1 − 1 + xn+1(x − 1)

x − 1

=
xn+1 − 1 + xn+2 − xn+1

x − 1

=
xn+2 − 1

x − 1

• Asymptotic (we don’t need to know result to do induction!):

Consider for example that we want to prove that
∑n

k=0 3k = O(3k), that is, that
∑n

k=0 3k ≤ c3n

for some c.

– Basis: n = 1 ⇒ ∑1
k=0 3x = 1 + 3 = 4

c31 = c3
Ok if c > 4/3

– Induction:
Assume holds for n:

∑n
k=0 3k ≤ c3n

Show holds for n + 1:
∑n+1

k=0 3k ≤ c3n+1

Proof:

n+1∑
k=0

3k =
n∑

k=0

3k + 3n+1

≤ c3n + 3n+1

= c3n+1(1/3 + 1/c)
≤ c3n+1

If 1/3 + 1/c < 1 which holds if c > 3/2

Another important sum:
∑n

k=1
1
k = 1 + 1

2 + 1
3 + · · · + 1

n = O(log n) (Harmonic Series)

3

3 Recurrences

• Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:

1. Divide P into smaller problems P1, P2, P3.....Pk.

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2, ...Pk into solution for P.

• Analysis of divide-and-conquer algorithms leads to recurrences.

• Merge-sort lead to the recurrence T (n) = 2T (n/2) + n

– or rather, T (n) =

{
Θ(1) If n = 1
T (dn

2 e) + T (bn
2 c) + Θ(n) If n > 1

– but we will often cheat and just solve the simple formula (equivalent to assuming that
n = 2k for some constant k, and leaving out base case and constant in Θ).

3.1 Substitution method

• Idea: Make good guess and prove by induction.

• Lets solve T (n) = 2T (n/2) + n using substitution

– Guess T (n) ≤ cn log n for some constant c (that is, T (n) = O(n log n))

– Proof:

∗ Basis: Function constant for small constant n

∗ Induction:
Assume holds for n/2: T (n/2) ≤ cn

2 log n
2

Show holds for n: T (n) ≤ cn log n
Proof:

T (n) = 2T (n/2) + n

≤ 2(c
n

2
log

n

2
) + n

= cn log
n

2
+ n

= cn log n − cn log 2 + n

= cn log n − cn + n

So ok if c ≥ 1

• T (n) = Ω(n log n) can be proved similarly.

• How do we make a good guess?

– Something of an art!

– Try different bounds (e.g. Ω(n) easy, show O(n2) ⇒ guess O(n log n))

4

• Note: changing variables can sometimes help

– Example: Solve T (n) = 2T (
√

n) + log n

Let m = log n ⇒ 2m = n ⇒ √
n = 2m/2

T (n) = 2T (
√

n) + log n ⇒ T (2m) = 2T (2m/2) + m

Let S(m) = T (2m)
T (2m) = 2T (2m/2) + m ⇒ S(m) = 2S(m/2) + m

⇒ S(m) = O(m log m)
⇒ T (n) = T (2m) = S(m) = O(m log m) = O(log n log log n)

• Next time we will discuss another method for solving recurrences.

5

