Lecture 3: Summations and Recurrences

(CLRS A, 4.1)

May 20th, 2002

1 Review

- Asymptotic growth: O, Ω, Θ
- We often think of $f(n)=O(g(n))$ as corresponding to $f(n) \leq g(n)$.
- Similarly, $f(n)=\Theta(g(n))$ corresponds to $f(n)=g(n)$
- Similarly, $f(n)=\Omega(g(n))$ corresponds to $f(n) \geq g(n)$
- One can also define o and ω
* $f(n)=o(g(n))$ corresponds to $f(n)<g(n)$
* $f(n)=\omega(g(n))$ corresponds to $f(n)>g(n)$
- Growth rate of standard functions:
- polynomials versus exponentials: $\lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0$, for any $a>1, b>0$.
- polynomials versus polylogarithmics: $\lim _{n \rightarrow \infty} \frac{\log ^{a} n}{n^{b}}=0$, for any $a, b>0$.

1.1 Log's

- Base 2 logarithm comes up all the time (from now on we will always mean $\log _{2} n$ when we write $\log n$).
- Number of times we can divide n by 2 to get to 1 or less.
- Number of bits in binary representation of n.
- Inverse function of $2^{n}=2 \cdot 2 \cdot 2 \cdots 2$ (n times).
- Way of doing multiplication by addition: $\log (a b)=\log (a)+\log (b)$
- Note:
$-\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$
$-\log n \ll \sqrt{n} \ll n$

2 Summations

When analyzing insertion-sort we used

$$
\sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2}=\Theta\left(n^{2}\right) \text { (Arithmetic series) }
$$

How can we prove this?

- Asymptotic:

Often good estimates can be found by using the largest value to bound others:

$$
\sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n=n \cdot \sum_{k=1}^{n} 1=n^{2}=O\left(n^{2}\right)
$$

Another trick: Splitting the sum:

$$
\sum_{k=1}^{n} k=\sum_{k=1}^{n / 2-1} k+\sum_{k=\frac{n}{2}}^{n} k \geq \sum_{k=1}^{n / 2-1} 0+\sum_{k=\frac{n}{2}}^{n} k \geq\left(\frac{n}{2}\right)^{2}=\Omega\left(n^{2}\right)
$$

\Downarrow

$$
\sum_{k=1}^{n} k=\Theta\left(n^{2}\right)
$$

- Precise (proof by induction!):
- Basis: $n=1 \Rightarrow \sum_{k=1}^{1}=1$

$$
\frac{\bar{n}(n+1)}{2}=\frac{1 \cdot 2}{2}=1
$$

- Induction:

Assume it holds for $n: \sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
Show it holds for $n+1: \sum_{k=1}^{n+1} k=\frac{(n+1)(n+2)}{2}=\frac{1}{2} n^{2}+\frac{3}{2} n+1$
Proof:

$$
\begin{aligned}
\sum_{k=1}^{n+1} k & =\sum_{k=1}^{n} k+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{1}{2} n^{2}+\frac{1}{2} n+n+1 \\
& =\frac{1}{2} n^{2}+\frac{3}{2} n+1
\end{aligned}
$$

In general we can prove that

$$
\sum_{k=1}^{n} k^{d}=\Theta\left(n^{d+1}\right)
$$

Another important sum:

$$
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots x^{n}=\frac{x^{n+1}-1}{x-1}=O\left(x^{n}\right)
$$

- Proof by induction:
- Basis: $n=1 \Rightarrow \sum_{k=0}^{1} x^{k}=1+x$

$$
\frac{x^{n+1}-1}{x-1}=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{(x-1)}=x+1
$$

- Induction:

Assume holds for $n: \sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$
Show it holds for $n+1$: $\sum_{k=0}^{n+1} x^{k}=\frac{x^{n+2}-1}{x-1}$
Proof:

$$
\begin{aligned}
\sum_{k=0}^{n+1} x^{k} & =\sum_{k=0}^{n} x^{k}+x^{n+1} \\
& =\frac{x^{n+1}-1}{x-1}+x^{n+1} \\
& =\frac{x^{n+1}-1+x^{n+1}(x-1)}{x-1} \\
& =\frac{x^{n+1}-1+x^{n+2}-x^{n+1}}{x-1} \\
& =\frac{x^{n+2}-1}{x-1}
\end{aligned}
$$

- Asymptotic (we don't need to know result to do induction!):

Consider for example that we want to prove that $\sum_{k=0}^{n} 3^{k}=O\left(3^{k}\right)$, that is, that $\sum_{k=0}^{n} 3^{k} \leq c 3^{n}$ for some c.

- Basis: $\quad n=1 \Rightarrow \sum_{k=0}^{1} 3^{x}=1+3=4$

$$
c 3^{1}=c 3
$$

Ok if $c>4 / 3$

- Induction:

Assume holds for n : $\sum_{k=0}^{n} 3^{k} \leq c 3^{n}$
Show holds for $n+1$: $\sum_{k=0}^{n+1} 3^{k} \leq c 3^{n+1}$
Proof:

$$
\begin{aligned}
\sum_{k=0}^{n+1} 3^{k} & =\sum_{k=0}^{n} 3^{k}+3^{n+1} \\
& \leq c 3^{n}+3^{n+1} \\
& =c 3^{n+1}(1 / 3+1 / c) \\
& \leq c 3^{n+1}
\end{aligned}
$$

If $1 / 3+1 / c<1$ which holds if $c>3 / 2$

Another important sum:

$$
\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=O(\log n)
$$

3 Recurrences

- Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:

1. Divide P into smaller problems $P_{1}, P_{2}, P_{3} \ldots . . P_{k}$.
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to $P_{1}, P_{2}, \ldots P_{k}$ into solution for P .

- Analysis of divide-and-conquer algorithms leads to recurrences.
- Merge-sort lead to the recurrence $T(n)=2 T(n / 2)+n$
- or rather, $T(n)= \begin{cases}\Theta(1) & \text { If } n=1 \\ T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) & \text { If } n>1\end{cases}$
- but we will often cheat and just solve the simple formula (equivalent to assuming that $n=2^{k}$ for some constant k, and leaving out base case and constant in Θ).

3.1 Substitution method

- Idea: Make good guess and prove by induction.
- Lets solve $T(n)=2 T(n / 2)+n$ using substitution
- Guess $T(n) \leq c n \log n$ for some constant c (that is, $T(n)=O(n \log n))$
- Proof:
* Basis: Function constant for small constant n
* Induction:

Assume holds for $n / 2: T(n / 2) \leq c \frac{n}{2} \log \frac{n}{2}$
Show holds for $n: T(n) \leq c n \log n$
Proof:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& \leq 2\left(c \frac{n}{2} \log \frac{n}{2}\right)+n \\
& =c n \log \frac{n}{2}+n \\
& =c n \log n-c n \log 2+n \\
& =c n \log n-c n+n
\end{aligned}
$$

So ok if $c \geq 1$

- $T(n)=\Omega(n \log n)$ can be proved similarly.
- How do we make a good guess?
- Something of an art!
- Try different bounds (e.g. $\Omega(n)$ easy, show $O\left(n^{2}\right) \Rightarrow$ guess $\left.O(n \log n)\right)$
- Note: changing variables can sometimes help
- Example: Solve $T(n)=2 T(\sqrt{n})+\log n$

Let $m=\log n \Rightarrow 2^{m}=n \Rightarrow \sqrt{n}=2^{m / 2}$

$$
T(n)=2 T(\sqrt{n})+\log n \Rightarrow T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

Let $S(m)=T\left(2^{m}\right)$
$T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m \Rightarrow S(m)=2 S(m / 2)+m$ $\Rightarrow S(m)=O(m \log m)$
$\Rightarrow T(n)=T\left(2^{m}\right)=S(m)=O(m \log m)=O(\log n \log \log n)$

- Next time we will discuss another method for solving recurrences.

