Lecture 2: Divide-and-Conquer and Growth of Functions

(CLRS 2.3,3)

May 17th, 2002

1 Designing Good Algorithms: Divide and Conquer/Mergesort

1.1 Divide-and-conquer

- Last time we discussed insertion sort
- We introduced RAM model of computation and discussed its limitations.
- We analyzed insertion sort in the RAM model
* Best-case $k_{1} n-k_{2}$.
* Worst-case (and average case) $k_{3} n^{2}+k_{4}-k_{5}$
- We discussed how we are normally only interested in growth of running time:
* Best-case linear in $n(\sim n)$, worst-case quadratic in $n\left(\sim n^{2}\right)$.
- Can we design better than n^{2} sorting algorithm?
- We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:

1. Divide P into smaller problems $P_{1}, P_{2}, P_{3} \ldots . . P_{k}$.
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to $P_{1}, P_{2}, \ldots P_{k}$ into solution for P.

1.2 Merge-Sort

- Using divide-and-conquer, we can obtain a merge-sort algorithm.
- Divide: Divide n elements into two subsequences of $n / 2$ elements each.
- Conquer: Sort the two subsequences recursively.
- Combine: Merge the two sorted subsequences.
- Assume we have procedure $\operatorname{Merge}(A, p, q, r)$ which merges sorted $\mathrm{A}[\mathrm{p} . . \mathrm{q}]$ with sorted $\mathrm{A}[\mathrm{q}+1 \ldots . \mathrm{r}]$ in $(r-p)$ time.
- We can sort $\mathrm{A}[\mathrm{p} . . \mathrm{r}]$ as follows (initially $\mathrm{p}=1$ and $\mathrm{r}=\mathrm{n}$):

Merge Sort(A,p,r)
If $p<r$ then
$q=\lfloor(p+r) / 2\rfloor$
MergeSort(A,p,q)
MergeSort(A, $\mathrm{q}+1, \mathrm{r})$
$\operatorname{Merge}(\mathrm{A}, \mathrm{p}, \mathrm{q}, \mathrm{r})$

Example:

1.3 Correctness

- Induction on n
- Easy assuming Merge() is correct!

1.4 Analysis

- To simplify things, let us assume that n is a power of 2 , i.e $n=2^{k}$ for some k.
- Running time of the procedure can be analyzed using a recurrence equation/relation.

$$
\begin{aligned}
T(n) & \leq c_{1}+T(n / 2)+T(n / 2)+c_{2} n \\
& \leq 2 T(n / 2)+c_{3} n
\end{aligned}
$$

\Downarrow
$T(n) \leq c_{1} n \log _{2} n$ as we will see later.

- We can also get $n \log _{2} n$ bound by noticing that the recursion tree has depth $\log _{2} n$ and that linear time is spent on each level.
- Note:
- We really have $T(n)=c_{4}$ if $n=1$
- If $n \neq 2^{k}$ things can be complicated (We will often assume $n=2^{k}$ to avoid complicated cases).

1.5 Log's

- Base 2 logarithm comes up all the time (from now on we will always mean $\log _{2} n$ when we write $\log n$).
- Number of times we can divide n by 2 to get to 1 or less.
- Number of bits in binary representation of n.
- Inverse function of $2^{n}=2 \cdot 2 \cdot 2 \cdots 2$ (n times).
- Way of doing multiplication by addition: $\log (a b)=\log (a)+\log (b)$
- Note:
$-\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$
$-\log n \ll \sqrt{n} \ll n$

1.6 Algorithms matter!

- Sort 10 million integers on
- 1 GHZ computer (1000 million instructions per second) using $2 n^{2}$ algorithm.
- 100 MHz computer (100 million instructions per second) using $50 n \log n$ algorithm.
- Supercomputer : $\frac{2 \cdot\left(10^{7}\right)^{2} \text { inst. }}{10^{9} \text { inst. per second }}=200000$ seconds ≈ 55 hours.
- Personal computer : $\frac{50 \cdot 10^{7} \cdot \log 10^{7} \text { inst. }}{10^{8} \text { inst. per second }}<\frac{50 \cdot 10^{7} \cdot 7 \cdot 3}{10^{8}}=5 \cdot 7 \cdot 3=105$ seconds.

2 Asymptotic Growth

- In the insertion-sort example we discussed that when analyzing algorithms we are
- interested in worst-case running time as function of input size n
- not interested in exact constants in bound
- not interested in lower order terms
- A good reason for not caring about constants and lower order terms is that the RAM model is not completely realistic anyway (not all operations cost the same)
\Downarrow
- We want to express rate of growth of standard functions:
- the leading term with respect to n
- ignoring constants in front of it

$$
\begin{aligned}
& k_{1} n+k_{2} \sim n \\
& k_{1} n \log n \sim n \log n \\
& k_{1} n^{2}+k_{2} n+k_{3} \sim n^{2}
\end{aligned}
$$

- We also want to formalize e.g. that a $n \log n$ algorithms is better than a n^{2} algorithm.
\Downarrow
- O-notation ($\mathrm{Big}-\mathrm{O}$)
- you have probably all seen it intuitively defined but we will now define it more carefully.

2.1 O-notation (Big- O)

$O(g(n))=\left\{f(n): \exists c, n_{0}>0\right.$ such that $\left.f(n) \leq c g(n) \forall n \geq n_{0}\right\}$

- $O(\cdot)$ is used to asymptotically upper bound a function.
- $O(\cdot)$ is used to bound worst-case running time.

- Examples:
$-1 / 3 n^{2}-3 n \in O\left(n^{2}\right)$ because $1 / 3 n^{2}-3 n \leq c n^{2}$ if $c \geq 1 / 3-3 / n$ which holds for $c=1 / 3$ and $n>1$.
$-k_{1} n^{2}+k_{2} n+k_{3} \in O\left(n^{2}\right)$ because $k_{1} n^{2}+k_{2} n+k_{3}<\left(k_{1}+\left|k_{2}\right|+\left|k_{3}\right|\right) n^{2}$ and for $c>$ $k_{1}+\left|k_{2}\right|+\left|k_{3}\right|$ and $n \geq 1, k_{1} n^{2}+k_{2} n+k_{3}<c n^{2}$.
$-k_{1} n^{2}+k_{2} n+k_{3} \in O\left(n^{3}\right)$ as $k_{1} n^{2}+k_{2} n+k_{3}<\left(k_{1}+k_{2}+k_{3}\right) n^{3}$ (Upper bound!).
- Note:
- When we say "the running time is $O\left(n^{2}\right)$ " we mean that the worst-case running time is $O\left(n^{2}\right)$ - best case might be better.
- Use of O-notation often makes it much easier to analyze algorithms; we can easily prove the $O\left(n^{2}\right)$ insertion-sort time bound by saying that both loops run in $O(n)$ time.
- We often abuse the notation a little:
* We often write $f(n)=O(g(n))$ instead of $f(n) \in O(g(n))$.
* We often use $O(n)$ in equations: e.g. $2 n^{2}+3 n+1=2 n^{2}+O(n)$ (meaning that $2 n^{2}+3 n+1=2 n^{2}+f(n)$ where $f(n)$ is some function in $\left.O(n)\right)$.
* We use $O(1)$ to denote constant time.

2.2Ω-notation (big-Omega)

$$
\begin{gathered}
\Omega(g(n))=\left\{f(n): \exists c, n_{0}>0 \text { such that } c g(n) \leq f(n) \forall n \geq n_{0}\right\} \\
\text { • } \Omega(\cdot) \text { is used to asymptotically lower bound a function. }
\end{gathered}
$$

- Examples:
$-1 / 3 n^{2}-3 n=\Omega\left(n^{2}\right)$ because $1 / 3 n^{2}-3 n \geq c n^{2}$ if $c \leq 1 / 3-3 / n$ which is true if $c=1 / 6$ and $n>18$.
$-k_{1} n^{2}+k_{2} n+k_{3}=\Omega\left(n^{2}\right)$.
$-k_{1} n^{2}+k_{2} n+k_{3}=\Omega(n)$ (lower bound!)
- Note:
- When we say "the running time is $\Omega\left(n^{2}\right)$ ", we mean that the best case running time is $\Omega\left(n^{2}\right)$ - the worst case might be worse.
- Insertion-sort:
- Best case: $\Omega(n)$
- Worst case: $O\left(n^{2}\right)$
- We can also say that the worst case running time is $\Omega\left(n^{2}\right) \Rightarrow$ worst case running time is "precisely" n^{2}.

2.3 -notation (Big-Theta)

$\Theta(g(n))=\left\{f(n): \exists c_{1}, c_{2}, n_{0}>0\right.$ such that $\left.c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}$

- $\Theta(\cdot)$ is used to asymptotically tight bound a function.

$f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- Examples:
$-k_{1} n^{2}+k_{2} n+k_{3}=\Theta\left(n^{2}\right)$
- worst case running time of insertion-sort is $\Theta\left(n^{2}\right)$
$-6 n \log n+\sqrt{n} \log ^{2} n=\Theta(n \log n)$:
* We need to find n_{0}, c_{1}, c_{2} such that $c_{1} n \log n \leq 6 n \log n+\sqrt{n} \log ^{2} n \leq c_{2} n \log n$ for $n>n_{0}$
$c_{1} n \log n \leq 6 n \log n+\sqrt{n} \log ^{2} n \Rightarrow c_{1} \leq 6+\frac{\log n}{\sqrt{n}}$. Ok if we choose $c_{1}=6$ and $n_{0}=1$. $6 n \log n+\sqrt{n} \log ^{2} n \leq c_{2} n \log n \Rightarrow 6+\frac{\log n}{\sqrt{n}} \leq c_{2}$. Is it ok to choose $c_{2}=7$? Yes, $\log n \leq \sqrt{n}$ if $n \geq 2$.
* So $c_{1}=6, c_{2}=7$ and $n_{0}=2$ works.
- Note:
- We often think of $f(n)=O(g(n))$ as corresponding to $f(n) \leq g(n)$.
- Similarly, $f(n)=\Theta(g(n))$ corresponds to $f(n)=g(n)$
- Similarly, $f(n)=\Omega(g(n))$ corresponds to $f(n) \geq g(n)$
- One can also define o and ω
* $f(n)=o(g(n))$ corresponds to $f(n)<g(n)$
* $f(n)=\omega(g(n))$ corresponds to $f(n)>g(n)$

2.4 Growth rate of standard functions

- Book introduces standard functions in section 2.2 (we will introduce them as we need them):
- Polynomial of degree $d: p(n)=\sum_{i=1}^{d} a_{i} \cdot n^{i}$ where $a_{1}, a_{2}, \ldots, a_{d}$ are constants (and $\left.a_{d}>0\right) . p(n)=\Theta\left(n^{d}\right)$
- "Growth order": $\log \log n, \log n, \sqrt{n}, n, n \log \log n, n \log n, n \log ^{2} n, n^{2}, n^{3}, 2^{n}$
- Growth rate of polynomials versus exponentials: $\lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0$.

