Lecture 2: Divide-and-Conquer and Growth of Functions

(CLRS 2.3,3)

May 17th, 2002

1 Designing Good Algorithms: Divide and Conquer/Mergesort

1.1 Divide-and-conquer

- Last time we discussed insertion sort
 - We introduced RAM model of computation and discussed its limitations.
 - We analyzed insertion sort in the RAM model
 - * Best-case $k_1n k_2$.
 - * Worst-case (and average case) $k_3n^2 + k_4 k_5$
 - We discussed how we are normally only interested in growth of running time:
 - * Best-case linear in $n (\sim n)$, worst-case quadratic in $n (\sim n^2)$.
- Can we design better than n^2 sorting algorithm?
- We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:

- 1. Divide P into smaller problems $P_1, P_2, P_3, \dots, P_k$.
- 2. Conquer by solving the (smaller) subproblems recursively.
- 3. Combine solutions to $P_1, P_2, \dots P_k$ into solution for P.

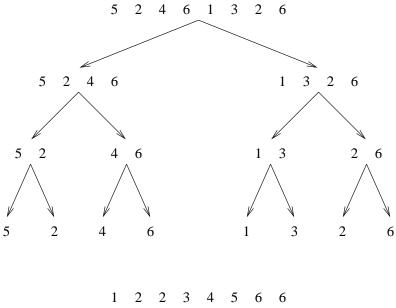
1.2 Merge-Sort

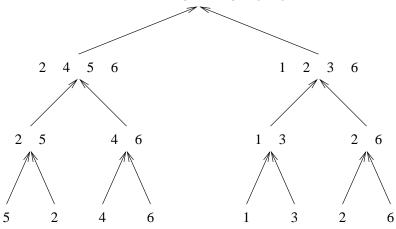
- Using divide-and-conquer, we can obtain a merge-sort algorithm.
 - Divide: Divide n elements into two subsequences of n/2 elements each.
 - Conquer: Sort the two subsequences recursively.
 - Combine: Merge the two sorted subsequences.
- Assume we have procedure Merge(A, p, q, r) which merges sorted A[p..q] with sorted A[q+1....r] in (r p) time.

• We can sort A[p...r] as follows (initially p=1 and r=n):

Merge Sort(A,p,r) If p < r then $q = \lfloor (p+r)/2 \rfloor$ MergeSort(A,p,q) MergeSort(A,q+1,r) Merge(A,p,q,r)

Example:





1.3 Correctness

- $\bullet\,$ Induction on n
 - Easy assuming Merge() is correct!

1.4 Analysis

- To simplify things, let us assume that n is a power of 2, i.e $n = 2^k$ for some k.
- Running time of the procedure can be analyzed using a recurrence equation/relation.

$$T(n) \leq c_1 + T(n/2) + T(n/2) + c_2 n$$

 $\leq 2T(n/2) + c_3 n$

∜

 $T(n) \leq c_1 n \log_2 n$ as we will see later.

- We can also get $n \log_2 n$ bound by noticing that the recursion tree has depth $\log_2 n$ and that linear time is spent on each level.
- Note:
 - We really have $T(n) = c_4$ if n = 1
 - If $n \neq 2^k$ things can be complicated (We will often assume $n = 2^k$ to avoid complicated cases).

1.5 Log's

- Base 2 logarithm comes up all the time (from now on we will always mean $\log_2 n$ when we write $\log n$).
 - Number of times we can divide n by 2 to get to 1 or less.
 - Number of bits in binary representation of n.
 - Inverse function of $2^n = 2 \cdot 2 \cdot 2 \cdots 2$ (*n* times).
 - Way of doing multiplication by addition: $\log(ab) = \log(a) + \log(b)$
- Note:

$$- \log_a n = \frac{\log_b n}{\log_b a}$$
$$- \log n \ll \sqrt{n} \ll n$$

1.6 Algorithms matter!

- Sort 10 million integers on
 - 1 GHZ computer (1000 million instructions per second) using $2n^2$ algorithm.
 - -100 MHz computer (100 million instructions per second) using $50n \log n$ algorithm.

• Supercomputer : $\frac{2 \cdot (10^7)^2 \text{ inst.}}{10^9 \text{ inst. per second}} = 200000 \text{ seconds} \approx 55 \text{ hours.}$

• Personal computer : $\frac{50 \cdot 10^7 \cdot \log 10^7 \text{ inst.}}{10^8 \text{ inst. per second}} < \frac{50 \cdot 10^7 \cdot 7 \cdot 3}{10^8} = 5 \cdot 7 \cdot 3 = 105 \text{ seconds.}$

2 Asymptotic Growth

- In the insertion-sort example we discussed that when analyzing algorithms we are
 - interested in worst-case running time as function of input size n
 - not interested in exact constants in bound
 - not interested in lower order terms
- A good reason for not caring about constants and lower order terms is that the RAM model is not completely realistic anyway (not all operations cost the same)

∜

- We want to express *rate of growth* of standard functions:
 - the leading term with respect to n
 - ignoring constants in front of it

 $k_1 n + k_2 \sim n$ $k_1 n \log n \sim n \log n$ $k_1 n^2 + k_2 n + k_3 \sim n^2$

• We also want to formalize e.g. that a $n \log n$ algorithms is better than a n^2 algorithm.

₩

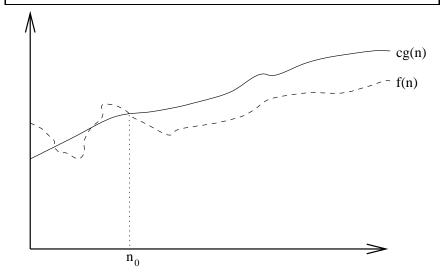
• O-notation (Big-O)

- you have probably all seen it intuitively defined but we will now define it more carefully.

2.1 O-notation (Big-O)

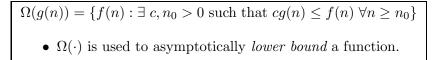
 $\overline{O(g(n))} = \{f(n) : \exists c, n_0 > 0 \text{ such that } f(n) \le cg(n) \ \forall n \ge n_0\}$

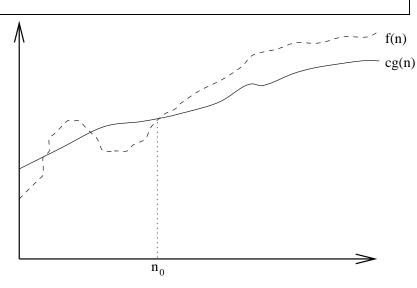
- $O(\cdot)$ is used to asymptotically *upper bound* a function.
- $O(\cdot)$ is used to bound *worst-case* running time.



- Examples:
 - $-1/3n^2 3n \in O(n^2)$ because $1/3n^2 3n \le cn^2$ if $c \ge 1/3 3/n$ which holds for c = 1/3 and n > 1.
 - $-k_1n^2 + k_2n + k_3 \in O(n^2) \text{ because } k_1n^2 + k_2n + k_3 < (k_1 + |k_2| + |k_3|)n^2 \text{ and for } c > k_1 + |k_2| + |k_3| \text{ and } n \ge 1, \ k_1n^2 + k_2n + k_3 < cn^2.$
 - $-k_1n^2 + k_2n + k_3 \in O(n^3)$ as $k_1n^2 + k_2n + k_3 < (k_1 + k_2 + k_3)n^3$ (Upper bound!).
- Note:
 - When we say "the running time is $O(n^2)$ " we mean that the worst-case running time is $O(n^2)$ best case might be better.
 - Use of O-notation often makes it much easier to analyze algorithms; we can easily prove the $O(n^2)$ insertion-sort time bound by saying that both loops run in O(n) time.
 - We often abuse the notation a little:
 - * We often write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$.
 - * We often use O(n) in equations: e.g. $2n^2 + 3n + 1 = 2n^2 + O(n)$ (meaning that $2n^2 + 3n + 1 = 2n^2 + f(n)$ where f(n) is some function in O(n)).
 - * We use O(1) to denote constant time.

2.2 Ω -notation (big-Omega)





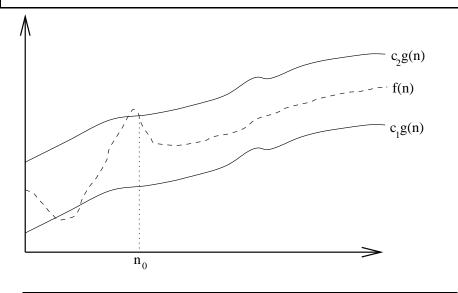
- Examples:
 - $-1/3n^2 3n = \Omega(n^2)$ because $1/3n^2 3n \ge cn^2$ if $c \le 1/3 3/n$ which is true if c = 1/6 and n > 18.
 - $-k_1n^2 + k_2n + k_3 = \Omega(n^2).$
 - $-k_1n^2 + k_2n + k_3 = \Omega(n) \text{ (lower bound!)}$

- Note:
 - When we say "the running time is $\Omega(n^2)$ ", we mean that the *best case* running time is $\Omega(n^2)$ the worst case might be worse.
- Insertion-sort:
 - Best case: $\Omega(n)$
 - Worst case: $O(n^2)$
 - We can also say that the *worst case* running time is $\Omega(n^2) \Rightarrow$ worst case running time is "precisely" n^2 .

2.3 Θ -notation (Big-Theta)

 $\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$

• $\Theta(\cdot)$ is used to asymptotically *tight bound* a function.



 $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

- Examples:
 - $-k_1n^2 + k_2n + k_3 = \Theta(n^2)$
 - worst case running time of insertion-sort is $\Theta(n^2)$
 - $6n\log n + \sqrt{n}\log^2 n = \Theta(n\log n):$
 - * We need to find n_0, c_1, c_2 such that $c_1 n \log n \le 6n \log n + \sqrt{n} \log^2 n \le c_2 n \log n$ for $n > n_0$ $c_1 n \log n \le 6n \log n + \sqrt{n} \log^2 n \Rightarrow c_1 \le 6 + \frac{\log n}{\sqrt{n}}$. Ok if we choose $c_1 = 6$ and $n_0 = 1$. $6n \log n + \sqrt{n} \log^2 n \le c_2 n \log n \Rightarrow 6 + \frac{\log n}{\sqrt{n}} \le c_2$. Is it ok to choose $c_2 = 7$? Yes, $\log n \le \sqrt{n}$ if $n \ge 2$.
 - * So $c_1 = 6$, $c_2 = 7$ and $n_0 = 2$ works.

- Note:
 - We often think of f(n) = O(g(n)) as corresponding to $f(n) \le g(n)$.
 - Similarly, $f(n) = \Theta(g(n))$ corresponds to f(n) = g(n)
 - Similarly, $f(n) = \Omega(g(n))$ corresponds to $f(n) \ge g(n)$
 - One can also define o and ω
 - * f(n) = o(g(n)) corresponds to f(n) < g(n)
 - * $f(n) = \omega(g(n))$ corresponds to f(n) > g(n)

2.4 Growth rate of standard functions

- Book introduces standard functions in section 2.2 (we will introduce them as we need them):
 - Polynomial of degree d: $p(n) = \sum_{i=1}^{d} a_i \cdot n^i$ where a_1, a_2, \ldots, a_d are constants (and $a_d > 0$). $p(n) = \Theta(n^d)$
- "Growth order": $\log \log n, \log n, \sqrt{n}, n, n \log \log n, n \log n, n \log^2 n, n^2, n^3, 2^n$
 - Growth rate of polynomials versus exponentials: $\lim_{n\to\infty} \frac{n^b}{a^n} = 0.$