
Lecture 1: Introduction
(CLRS 1+2.1-2.2)

May 16th, 2002

1 Administration

1.1 Basic information

• CPS130: Introduction to the Design and Analysis of Algorithms

– Course www page at http://www.cs.duke.edu/education/courses/cps130/summer02/

• Instructor: Laura Toma (D224 LSRC Bldg., laura@cs.duke.edu)

– PhD student, working with Lars Arge on graph problems involving massive data sets.

• TA: Tammy Bailey (D343 LSRC Bldg., tammy@cs.duke.edu)

– PhD student, working with Xiaobai Sun on spherical wavelets (scientific computing).

1.2 Course material

• Cormen, Leiserson, Rivest, and Stein: Introduction to Algorithms, Second edition, McGraw
Hill.

– Some chapters of the recent second edition of the book are substantially different from
the first edition.

– I will often present material (using the lecture notes) in a (slightly) different way than
the book.

• Lecture notes

– Written by Lars Arge for the previous CPS130 classes. Handed out at lecture and
available online.

• Handouts.
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1.3 Course synopsis

• The course builds on the study of algorithms and data structures from CPS100.

– Some material (especially in the beginning) will be repetition of CPS100 material (but
covered in more depth).

• Prerequisites

– Good math skills: Basic notation, proofs (induction), limits, basic probability theory,...
(we will briefly review all of these).

– Knowledge of programming: How to express algorithms in a computer language, recur-
sion,... (We will not be doing implementations!).

• Topics covered:

– Mathematical foundation (Growth of functions, summations, recurrences)
– Sorting and selection
– Searching
– Amortized analysis
– Algorithm design techniques
– Graph algorithms
– Complexity

• Lecture Schedule:

– Lecture www page contains information about covered material.

1.4 Grading

• Homework assignments – approximately 30%.

• Two midterm exams and a final exam – approximately 70 (20 + 20 +30) %.

• Class participation.

Note: Attendance is vital to your success in this class. This is because a summer course is
very rigorous and a 2-day absence is equivalent to a week’s absence in a regular semester.

1.5 Homeworks and Recitation Sessions

• Homework will be assigned at every class and is always due at the beginning of the next class
(unless otherwise mentioned).

• Collaboration is (strongly) encouraged but solutions must be written up individually.

• Homeworks will (hopefully!) be graded the day they are turned in. Graded homeworks will
be handed the next class at the end of the class and the solutions will be briefly discussed after
class, in a daily mini-recitation session from 4:45 to 5 pm. More details on the homeworks
solutions can be asked at the office hours.
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• More practice problems, similar to what you will have at the exams, will be solved at the
weekly recitation sessions.

1.6 CPS130 as a summer class: pros and cons

Hmm...Which are pros and which are cons?!

• Smaller class (well, compared to 97 people in Spring’02)

• More opportunity for asking questions, i.e. interactive class

• Less likely to doze off (crosswords?) without being noticed

• More personal attention

• Instructor is a grad student; never taught a class before

• Fast pace means you have less time to digest and comprehend new material

• Readings and assignments are due every day

• Assignments are graded and returned the next day; daily feedback

• Fewer distractions than in the regular academic year; better focus

• Miss one class, miss a whole chapter

• Class covers pretty much the same material as a regular (3 month) class

• More emphasis in class on problem solving
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2 Introduction

• Class is about designing and analyzing algorithms

– Algorithm: A well-defined procedure that transfers an input to an output.

∗ Not a program (but often specified like it): An algorithm can often be implemented
in several ways.

– Design: We will study methods/ideas/tricks for developing (fast!) algorithms.

– Analysis: Abstract/mathematical comparison of algorithms (without actually imple-
menting them).

• Math is needed in three ways:

– Formal specification of problem

– Analysis of correctness

– Analysis of efficiency (time, memory use,...)

• Hopefully the class will show that algorithms matter!

3 Algorithm example: Insertion-sort

3.1 Specification

• Input: n integers in array A[1..n]

• Output: A sorted in increasing order

3.2 Insertion-sort algorithm

FOR j = 2 to n DO
key = A[j]
i = j − 1
WHILE i > 0 and A[i] > key DO

A[i + 1] = A[i]
i = i − 1

OD
A[i + 1] = key

OD

• NOTE: Algorithm shows example of the (Pascal like) pseudo-code we will sometimes used to
describe algorithms.

Example:
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j=6 i=5

i=4

i=3

1 2 4 5 6 3

1 2 4 5 6 6

1 2 4 5 5 6

1 2 4 4 5 6

1 2 3 4 5 6

i=2

6 1 3 j=5 i=4

i=3

i=2

i=1

i=0

2 4 5

2 4 5

6 6 3

2 4 5 5 6 3

2 4 4 5 6 3

2 2 4 5 6 3

1 2 4 5 6 3

key=1

key=3

i=12 5 5 6 1 3

2 4 5 6 1 3

2 5 4 6 1 3 j=3 i=2

5 2 4 6 1 3

5 5 4 6 1 3

j=2 i=1

i=0

2 5 4 6 1 3

key=2

key=4

2 4 5 6 1 3

2 4 5 6 1 3 j=4 i=3 key=6

3.3 Correctness

• Induction (loop invariant):

– The Invariant “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.

– When j=n+1 (Termination) we have correct output.

3.4 Analysis

• We want to predict the resource use of the algorithm.

• We can be interested in different resources

– but normally running time.

• To analyze running time we need mathematical model of a computer:

5



Random-access machine (RAM) model:

– Memory consists of infinite array

– Instructions executed sequentially one at a time

– All instructions take unit time:

∗ Load/Store
∗ Arithmetics (e.g. +,−, ∗, /)
∗ Logic (e.g. >)

• Running time of an algorithm is the number of RAM instructions it executes.

• RAM model not completely realistic, e.g.

– memory not infinite (even though we often imagine it is when we program)
– not all memory accesses take same time (cache, main memory, disk)
– not all arithmetic operations take same time (e.g. multiplications expensive)
– instruction pipelining
– other processes

• But RAM model often enough to give relatively realistic results (if we don’t cheat too much).

• Running time of insertion-sort depends on many things

– How sorted the input is
– How big the input is
– ...

• Normally we are interested in running time as a function of input size

– in insertion-sort: n.

• We don’t really want to count every RAM instruction

– Let us analyze insertion-sort by assuming that line i in the program use ci RAM instruc-
tions.

– How many times are each line of the program executed?
∗ Let tj be the number of times line 4 (the WHILE statement) is executed in the j’th

iteration.

cost times
FOR j = 2 to n DO c1 n

key = A[j] c2 n − 1
i = j − 1 c3 n − 1
WHILE i > 0 and A[i] > key DO c4

∑n
j=2 tj

A[i + 1] = A[i] c5
∑n

j=2(tj − 1)
i = i − 1 c6

∑n
j=2(tj − 1)

OD
A[i + 1] = key c7 n − 1

OD
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• Running time: (depends on tj)

T (n) = c1n + c2(n− 1)+ c3(n− 1)+ c4
∑n

j=2 tj + c5
∑n

j=2(tj − 1)+ c6
∑n

j=2(tj − 1)+ c7(n− 1)

– Best case: tj = 1 (already sorted)
T (n) = c1n + c2(n − 1) + c3(n − 1) + c4(n − 1) + c7(n − 1)

= (c1 + c2 + c3 + c4 + c7)n − (c2 + c3 + c4 + c7)
= k1n − k2

Linear function of n

– Worst case: tj = j (sorted in decreasing order)
T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

∑n
j=2 j + c5

∑n
j=2(j − 1) + c6

∑n
j=2(j − 1) + c7(n − 1)

= c1n + c2(n − 1) + c3(n − 1) + c4(
n(n+1)

2 − 1) + c5(
(n−1)n

2 ) + c6(
(n−1)n

2 ) + c7(n − 1)
= (c4/2 + c5/2 + c6/2)n2 + (c1 + c2 + c3 + c4/2 − c5/2 − c6/2 + c7)n − (c2 + c3 + c4 + c7)
= k3n

2 + k4n − k5

Quadratic function of n

Note: We used
∑n

j=1 j = n(n+1)
2 (Next week!)

– “Average case”: Be careful! (average over what?)

We assume n numbers chosen randomly ⇒ tj = j/2
T (n) = k6n

2 + k7n + k8

Still Quadratic function of n

• Note:

– We will normally be interested in worst-case running time.

∗ Upper bound on running time for any input.
∗ For some algorithms, worst-case occur fairly often.
∗ Average case often as bad as worst case (but not always!).

– We will only consider order of growth of running time:

∗ We already ignored cost of each statement and used the constants ci.
∗ We even ignored ci and used ki.
∗ We just said that best case was linear in n and worst/average case quadratic in n.

⇒ O-notation (best case O(n), worst/average case O(n2)) (next lecture!)
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